
AD-AO87 996 COMPUTER CORP OF AMERICA CAMBRIDGE MA P 6 9/2

FUNDAMENTAL ALGORITHMS FOR CONCURRENCY CONTROL IN.DISTRIBUTED 0 -ETC(U)
MAY GO P A BERNSTEIN. N GOODMAN F 0602-79-C-0191

UNCASIFEDRADC-TR-80-158 NL

."3 EEE~~mohmhhEEmhhh
smEohEEohhhmhE
EomhhEohhhhEE

3Q2

11111 112.0~
1.25 L I .

MICROCOPY RESOLU1ION IISI CHARI
NAHONAL BUR4tA0 M 4AN 1AII A

-TU

PAWd Tedmmhm lepse

AD AO087 9 96
FUNDAMENTAL ALGORITHMS FOR
CONCURRENCY CONTROL IN DISTRIBUTED
DATABASE SYSTEMS
Csmputor Cpexatimn of Amak.

Ph1ip A. Berstein
Nathan Goodman

Co..

ROME AIR DEVELOPMENT CENTER
o.. Air Force Systems CommandSGrffss Air Force Base, New York 13441
'LAJ

808318 140

TbU report hs been reviewed by the R DC hblic Mfairs Office (H..
end In releasable to the National Technical Znfovostion Sevico Onll. At
NTIS It will be relessable to the general public, includifg forelp at.

AIDC-TR-80-158 has bon reviewed and is approved for publicstamf.

APPROVER:

THOMAS F. LAWRENCE
Project Engineer

APPROVED:

ALA R. BARNUM, Assistant Chief
Information Sciences DIvision

FOR THE COM1KANDER: ofc

'i

I"

If your address has changed or if you wish to he removed from the DAC IO1
In& list, or if the addressee -is no longer employd by your orgmaiatimt,
please notify RADC ISCP)., GriffLss API XT 13441. This will asstl us is
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

A L!
-, - -- ~h iU

ECRT UNCLASSIFIED
SEURTYCASSaFICATION OF T04IS PAGE (Whm, V4tf ntot(J,

~~ONTREA INSTRUCTIONS DA

4. ITE (Adir Deeomn Cete UPcP // *8

14. MO N A GRTOHIN FOR NA .~~lSSME~fONCURREC Ue.4t IS S ecUR iTY CAS Of t t 0

IS.RO O NISTRISUBUTAE ENT (of 'AS! =ShiW aprt

7. AUPPEMTRYa N.CNTATOTGRNESMCIIs

DhiltibuZAte Sstems
Dataases

Concutrec Corolwo meia572

57. AUTTcolo ISquare I ~~~vmdistI'5 le ub

Thisreprt urves ad cnsoldats te sate-f-te..rt i ditrite
solve the DenteonCrencyr (Icnro prbe. alotmcosrte

-. o m I TONI 3 EIaT ION FOAM Ie NOV65IT ILSS (ofLT tNCLArepFIED

SECU~iT 8CLASSIFIE
D NSP G (ieDe ue d

Same tri- S... .. a,.e..w.OF

UNCLASSIFIED
iguRiTY CLASSIICATION OF THIS .AGtWhIen Deta E .e)

pin this way are called concurrency methods. The report describes 48
principle concurrency control methods; these methods include all
practical algorithms for distributed database concurrency control that
have appeared in the literature plus several new algorithms.

In addition, an analysis of principal concurrency control methods in
qualitative terms is performed. The analysis considers four cost
factors: communication overhead, local processing overhead, trans-
action restarts, and transaction blocking. The results indicate that
only about 10 of the principal concurrency control methods are reasonabl

choices in practice. This list of so-called dominant methods includes
both old and new algorithms.

This report concludes with r omumendations for future researchdirections.

Umrmounced
Just it lc .t I. - .

DistrV - /

UNCLASSIFIED

SECURITY CLASSIICATION OF * , PAGIEV em, D, EntodE)

"77*

Distributed Database Concurrency Control Page -S-1-

Technical Summary

Technical SummAry

The long range goal of research on distributed database

concurrency control is to develop a methodology for designing

good concurrency control methods for a given system environment

and a given class of applications. As a first step toward this

goal, this study presents an overview of the state-of-the-art,

of distributed database concurrency control.,

We set the stage for this study by presenting a model of

transaction processing in a distributed database system,

emphasizing the essential inter-site interactions needed to

process users' transactions. This model provides a common

framework for describing and analyzing concurrency control

methods, a framework that has been lacking in the literature.

We then review the mathematical theory of concurrency control.

We formalize the principal correctness criterion for a

concurrency control method -- namely serializability. And we

show how the overall problem of attaining serializability can be

decomposed into two sub-problems -- read-write and write-write

synchronization. This decomposition is the cornerstone of our

paradigm for the design and analysis of concurrency control

methods.

We exploit this paradigm to examine fundamental read-write and

write-write synchronization ± .g/ aa/ outside the context of

Page -S-2- Distributed Database Concurrency Control
Technical Summary

any specific concurrency control method. We consider virtually

all known synchronization techniques and show that these

techniques can be understood as variations of two bA"Q

techniques -- two-phase locking (2PL) and timestamp ordering

(T/a). This consolidation of the state-of-the-art is possible

in large part because of our read-write/write-write paradigm for

concurrency control and our common transaction processing model

introduced earlier.

We study the space of concurrency control methods that can be

constructed from the previously described techniques. We show

this space to be enormous: there are thousands of ways of

combining synchronization techniques into complete concurrency

control methods. However, we identify 48 of these methods as

Drincipal methods. Most' of these principal methods have not

been described in the literature previously, and several of

these new methods have interesting performance characteristics.

Next, we analyze the performance of principal methods. We

describe the four main performance measures for concurrency

control methods -- communication overhead, local processing

overhead, transaction restarts, and transaction blocking. We

analyze the major synchronization techniques and the principal

concurrency control methods relative to each performance measure

in qualitative terms. We show that no method has optimal

performance under all four measures, .which means that no method

Distributed Database Concurrency Control Page -S-3-
Technical Summary

can be expected to perform optimally for all system environments

and applications. However, we identify 11 methods as Againank

aathoda -- for any given system and application we believe that

one of these 11 dominant methods g±jJ be optimal. In addition,

we suggest a design scenario for choosing among dominant methods

for certain kinds of stereotypical applications.

In the Appendix we discuss three methods that have appeared in

the literature but do not fit into our framework of techniques

and methods. While these methods are intellectually impressive

(and, in some cases, famous), none is of practical significance

in a distributed database environment.

Briefly, then, the state-of-the-art in distributed database

concurrency control is as follows.

1. a large number of correct methods for distributed

database concurrency control are known;

2. many important characteristics of system environments

and applications have been isolated;

3. the relative performance of concurrency control methods

has been qualitatively analyzed for some combinations

of system and'application characteristics.

We close with recommendations on profitable avenues for future

research.

V!

Distributed Database Concurrency Control Page -1-
Table of Contents

Table of Contents

1. The Concurrency Control Problem 1
1.1 Introduction 1
1.2 Examples of Concurrency Control Anomalies 5
1.3 Comparison to Mutual Exclusion Problems 9
1.4 Outline of Report 10

2. Transaction Processing Model 12
2.1 Preliminary Definitions 12
2.2 DDBMS Architecture 17
2.3 Centralized Transaction Processing Model 21
2.4 Distributed Transaction Processing Model 28

3. Concurrency Control Theory 33
3.1 Serializability 33
3.2 Characterizing Serializability 34
3.2.1 Serial Executions 35
3.2.2 Equivalent Executions 37
3.2.3 Serializable Executions 40
3.3 A Paradigm for Concurrency Control 42
3.3.1 The -> Relation 42
3.3.2 Distinguishing Read-Write

from Write-Write Synchronization 44

4. Synchronization Techniques 46
4.1 Two Phase Locking (2PL) 48
4.1.1 Specification 48
4.1.2 Basic Implementation 50
4.1.3 Primary Copy 2PL 51
4.1.4 Voting 2PL 53
4.1.5 Centralized 2PL 54
4.1.6 Deadlock 55
4.1.7 Deadlock Prevention 57
4.1.8 Deadlock Detection 62
4.1.9 Deadlock Resolution for Voting 2PL 69
4.1.10 Heuristics for Reducing Deadlock 69
4.2 Timestamp Ordering (T/O) 73
4.2.1 Specification 73
4.2.2 Basic Implementation 74
4.2.3 The Thomas Write Rule 76
4.2.4 Multi-Version T/O 77
4.2.5 Conservative T/O 80
4.2.6 Conservative T/O with Transaction Classes 86

* . . .-77

Page -ii- Distributed Database Concurrency Control
Table of Contents

4.2.7 Conservative T/O with Conflict Graph Analysis 89
3.2.8 Timestamp Management 94
4.2.9 Integrating Two-Phase Commit into T/O 95
4.2.10 Heuristics for Reducing Restarts 99

5. Integrated Concurrency Control Methods 102
5.1 Pure 2PL Methods 105
5.1.1 Methods Using Basic 2PL for rw Synchronization 106
5.1.2 Methods Using Primary

Copy 2PL for rw Synchronization 108
5.1.3 Methods Using Centralized

2PL for rw Synchronization 110
5.2 Pure T/O Methods 111
5.2.1 Methods Using Basic T/O for rw Synchronization 113
5.2.2 Methods Using Multi-version

T/O for rw Synchronization 115
5.2.3 Methods Using Conservative

T/O for rw Synchronization 120
5.3 Mixed 2PL and T/O Methods 122
5.3.1 The Interface 123
5.3.2 Mixed Methods Using 2PL for rw Synchronization 125
5.3.3 Mixed Methods Using T/O for rw Synchronization 127

6. Performance of Concurrency Control Methods 131
6.1 Overview 132
6.2 Communication Overhead 134
6.2.1 Baseline Communication Requirements 135
6.2.2 Communication Overhead of 2PL Techniques 137
6.2.3 Communication Overhead of T/O Techniques 143
6.2.4 Communication Overhead of Principal Methods 145
6.3 Local Processing Overhead .150
6.3.1 Local Processing Overhead of 2PL

Techniques and Methods 152
6.3.2 Local Processing Overhead

of T/O Techniques and Methods 153
6.3.3 Comparison of 2PL and T/O Methods 156
6.3.4 Local Processing Overhead of Mixed Methods 158
6.4 Transaction Restarts 160
6.4.1 Restart Behavior of 2PL Techniques 160
6.4.2 Restart Behavior of T/O Techniques 164
6.4.3 Comparison of 2PL and T/O Techniques 166
6.4.4 Restart Behavior of Principal Methods 169
6.5 Transaction Blocking 171
6.5.1 Blocking Behavior of 2PL Techniques 171
6.5.2 Blocking Behavior of T/O Techniques 172
6.5.3 Comparison of 2PL and T/O Techniques 174
6.5.4 Blocking Behavior of Principal Methods 177
6.6 Dominant Methods 179
6.6.1 Dominant 2PL Methods 182
6.6.2 Dominant T/O Method 190
6.6.3 Dominant Mixed Methods 196
6.7 Designing a Concurrency Control Method 198
6.7.1 Handling Pessimism 200
6.7.2 Handling Optimism 205
6.7.3 Handling In-Between Applications 208
6.8 Review of Past Work 209

Distributed Database Concurrency Control Page -iii-
Table of Contents

7. State-Of-The-Art and Directions for Further Work 213
7.1 Summary 213
7.2 Recommendations 217
7.2.1 Reliability 218
7.2.2 Distributed Database Design 218
7.2.3 Basic Performance Data 219
7.2.4 Final Remarks 220

A. Other Concurrency Control Methods 223
A.1 Certifiers 224
A.1.1 The Certification Approach 224
A.1.2 Certification Using the -> Relation 226
A.2 Thomas' Majority Consensus Algorithm 228
A.2.1 The Algorithm 229
A.2.2 Correctness 233
A.2.3 Partially Redundant Databases 234
A.2.4 Performance 236
A.2.5 Reliability 237
A.3 Ellis' Ring Algorithm 239

|-

EVALUATION

This final report provides the basis for the structuring of new algorithms

for Concurrency Control (CC) and provides the basis for codifying engineering

information for the design of distributed databases which are particularly

relevant to Command and Control Systems.

This effort applies to TPO-R3, Thrust D, "C2 Information Processing";

Subthrust 1, "C2 Information System Structures; specifically, Project 5581,

Task 21, "Network and Distributed Processing Studies" and Project 2530, Task 01,

"Distributed Data Processing".

This report forms the basis for the follow-on effort entitled "DDB Control

and Allocation" in which CC algorithms will be evaluated and a System Designer's
1 ok will developed.

THOMAS F. LAWRENCE
Project Engineer

iv

Distributed Database Concurrency Control Page -1-

The Concurrency Control Problem Section 1

1. The Concurrency Control Problem

1.1 Introduction

Concurrency control is a necessary component of any multi-user

database management system (DBMS). Its role is to coordinate

the database interactions of users who are accessing a database

at the same time. Concurrency control permits multiple users to

access a database in a multi-programmed fashion while preserving

the illusion that each user is executing alone on a dedicated

system. The -main technical difficulty in attaining this goal is

to prevent database updates performed by one user from

interfering with database retrievals and updates performed by

another. The nature of this problem is illustrated in Section

1.2.

The concurrency control problem is exacerbated in a distributed

database management system (DDBMS) for two reasons. First,

users may access data stored in many different computers in a

distributed system. And second, a concurrency control mechanism

at one computer cannot instantaneously know about interactions

at other computers.

Page -2- Distributed Database Concurrency Control
Section 1 The Concurrency Control Problem

Concurrency control has been an active research and development

field for the past several years, and the problem for

non-distributed DBMSs is well in hand. One approach, called

two-phase locking, has been accepted as a de facto standard, and

a broad mathematical theory, called serializability theory, has

been developed to analyze the problem. Current research on

non-distributed concurrency control is focused on evolutionary

improvements to two-phase locking, detailed performance analysis

and optimization, and extensions to serializability theory.

Distributed concurrency control, by contrast, is in a state of

extreme turbulence. More then twenty concurrency control

algorithms have been proposed for DDBMSs, and several have been,

or are being, implemented. These algorithms are usually complex

and hard to understand. It is difficult to prove the

correctness of these algorithms, and indeed many are incorrect

for technical reasons. The algorithms are not described in

standard terminology and different algorithms make different

assumptions regarding the underlying DDBMS environment. For

these reasons, it is difficult to compare the many proposed

algorithms, even in qualitative and general terms. Naturally

each author proclaims his approach to be superior, but there is

little compelling evidence to support any such claims.

The purpose of this report is to survey and consolidate the

state-of-the-art in DDBMS concurrency control. We shall

Distributed Database Concurrency Control Page -3-
The Concurrency Control Problem Section 1

introduce a standard terminology for describing DDBMS

concurrency control algorithms and a standard model for the

DDBMS environment. Using this terminology and model as a

foundation, we are able to decompose the overall concurrency

control problem into two major sub-problems, called read-write

and write-write synchronization. Every concurrency control

algorithm must include a sub-algorithm for solving each of these

sub-problems. To understand and analyze an overall concurrency

control algorithm, a useful first step is to isolate the

sub-algorithms employed for each sub-problem.

Despite the large number of proposed algorithms, we will see

that relatively few sub-algorithms are possible. Indeed, we

will see that the sub-algorithms used by all practical DDBMS

concurrency control algorithms are variations of two basic

techniques: two-phase locking, and a technique called timestamp

ordering. Thus, the state-of-the-art in DDBMS concurrency

control is far more coherent than a review of the literature

would indicate.

Having structured the problem of DDBMS concurrency control in

this way, several benefits accrue.

1. We are able to describe proposed algorithms in a common

framework, thereby permitting different algorithms to

be easily compared.

.*..- 1.

Page -4- Distributed Database Concurrency Control
Section I The Concurrency Control Problem

2. We are able to create new algorithms by combining

sub-algorithms in unexpected ways. In this report we

describe 43 new algorithms created in this way; several

of these new algorithms apparently have better

performance than many previously described algorithms.

3. Because different algorithms can be easily compared,

detailed qualitative performance analysis is possible.

This analysis prunes the space of reasonable

concurrency control algorithms to 11. In certain

stereotypical situations the number of plausible

algorithms can be further reduced to 3 or 4.

4. Finally, our structuring of the concurrency control

problem helps organize the design of DDBMS concurrency

control algorithms. This report describes the major

techniques that can be employed by such algorithms, and

the qualitative impact of each technique on

performance.

The remainder of Section 1 is organized as follows. Section 1.2

presents examples illustrating the concurrency control problem.

We will see that concurrency control is similar in appearance to

synchronization problems that arise in operating systems. The

relationship between these two problem areas is discussed in

Section 1.3. Section 1.4 presents a section outline of the rest

of the report.

4 -

Distributed Database Concurrency Control Page -5-
The Concurrency Control Problem Section 1

1.2 Examples of Concurrency Control Anomalies

The goal of concurrency control is to prevent interference

between users who are simultaneously accessing a database. In

this section we illustrate the problem by presenting two

"canonical" examples of inter-user interference. Both examples

are stated in the context of an on-line electronic funds

transfer system accessed via remote automated teller machines

(ATMs). In response to customer requests, ATMs retrieve data

from a database, perform computations, and store results back

into the database.

AnomalXJ.-- Lost Update s

Suppose two customers simultaneously try to deposit money into

the same account. In the absence of concurrency control, these

two activities could interfere as shown in figure 1.1. The two

ATMs handling the two customers could read the account balance

at approximately the same time, compute new balances in

parallel, and then store the new balances back into the

database. The net effect is incorrect: although two customers

deposited money, the database only reflects one activity; the

other deposit has been lost by the system.

Page -6- Distributed Database Concurrency Control
Section 1 The Concurrency Control Problem

Lost Update Anamoly Figure 1.1

eSuppose Acme Corp.'s Initial balance is $500,000. And suppose the following
two transactions are siuultaneously executed.

T': deposit $1,000,000 Into Acme's account
?-: deposit $2,000,000 Into at's account2

-The correct final balance Is $3,500,000

-In the absence of concurrency control, the following Incorrect execution
could occur.

Execution of T1 Database Execution of T2

READ balance 000, [00000 R=~l balance

Add $1,000,000 $1,500,000 E$2,0,000 Add $2,000,000

WRITE result WRITE result
back to database back to database

- -------- ----------------

Distributed Database Concurrency Control Page -7-
The Concurrency Control Problem Section 1

Anomaly 2 -- Inconsistent Retrievals

Suppose two customers simultaneously execute the following

transactions.

Customer 1: Move $1,000,000 from Acme Corp.'s savings account

to its checking account.

Customer 2: Print Acme Corp.'s total balance in savings and

checking.

In the absence of concurrency control these two transactions

could interfere as shown in figure 1.2. The first transaction

might read the savings account balance, subtract $1,000,000, and

store the result back in the database. Then the second

transaction might read the savings and checking account balances

and print the total. Then the first transaction might finish

the funds transfer by reading the checking account balance,

adding $1,000,000, and finally storing the result in the

database.

Unlike Anomaly 1, the finally values placed into the database by

this execution are correct. Nonetheless, the execution is

incorrect because the balance printed by Customer 2 is

$1,000,000 short.

These two examples do not exhaust all possible ways in which

concurrent users can interfere, and the notion of

interference-free execution will be defined precisely in later

sections. However, these examples are typical of the

concurrency control problems that arise in DBMSs.

ia -b- Distributed Database C ewcy Control
Section 1 The Concurren. oi,,rol Problem
--
Tnconsistent Retrieval Anamoly Figure 1.2

* Suppose Acme Corp. has $2,000,000 in savings and $500,000 in checking. And
suppose the folloving two transactions are executed simultaneously.

Move $1.000,000 from savings to checking

T2: Print the sum of savings and checking

-The correct final balances are $1,000,000 in savings and $1,500,000 in
checking. The sum of checking and savings is $2,500,000. (both before and
after T1).

* In the absence of concurrency control, the following incorrect execution
could occur.

Execution of Tl Database Execution of T2

READ saving. balance f $2. -, 000
Subtract $1,000,000

WRITE result 1II$ 00 0

READ checking balance READ savings balance

Add $1,000,000 $ 0000is $1,000,0001 READ checking balance
L 500,0001

WRITE result $51.00.000

I 'sum J.300,00 Print Sum

.0,0

$1,50010

Distributed Database Concurrency Control Page -9-
The Concurrency Control Problem Section 1

1.3 Comparison to Mutual Exclusion Problems

The problem of database concurrency control is similar in some

respects to the problem of mutual exclusion in operating

systems. The latter problem is concerned with coordinating

access by concurrent processes to system resources -- e.g.

memory, I/0 devices, CPU, etc. The basic problem is to ensure

that each resource is accessed by at most one process at any

given time. Many techniques for solving this problem have been

developed including locks, semaphores [Dijkstral, monitors

[Hoare], and serializers[Hewitt].

The concurrency control and mutual exclusion problems are

similar in that both problems are concerned with controlling

concurrent access to shared resources. However, there are also

a number of major differences between these problems.

Most importantly, concurrency control and mutual exclusion have

fundamentally different objectives. The goal of a concurrency

control algorithm is to ensure that concurrent processes do not

"interfere" with each other. The goal of a mutual exclusion

algorithm is less ambitious, seeking only to ensure that

concurrent processes do not access the same resource at the same

time.

Page -10- Distributed Database Concurrency Control
Section 1 The Concurrency Control Problem

This distinction substantially impacts the technical content of

each problem area, as illustrated by the following example.

Suppose processes P1 and P2 require access to resources R1 and

R2 at different points in their execution. In an operating

system, the following interleaved execution of these processes

is perfectly acceptable: P1 uses R1 ; P2 uses R1 ; P2 uses R2 ; P1

uses R2. In a database, however, this execution is not always

acceptable. By way of proof, Anomaly 2 of the previous section

results from an interleaved execution of this form, where R1

represents Acme Corp.'s savings account and R2 represents its

checking account.

Other differences between concurrency control and mutual

exclusion are discussed in [CBTJ.

1.4 Outline of Report

The report consists of three main parts. Part I, comprising

Sections 1-3, is introductory in nature. Section 1 describes

the concurrency control problem in general terms. Section 2

introduces standard terminology for defining concurrency control

algorithms. Section 3 defines the concurrency control problem

in precise terms and states the precise decomposition of this

problem into the sub-problems of read-write and write-write

synchronization.

Distributed Database Concurrency Control Page -11-
The Concurrency Control Problem Section 1

:Part I1 -- Sections 4-6 -- is the technical body of the report

Section 4 presents a series of techniques for solving the

read-write and write-write synchronization sub-problems.

Section 5 shows how these techniques can be integrated to form

complete solution to the DDBMS concurrency control problem;

those solutions are called concurrency control methods. Section

6 analyzes the performance of principal concurrency control

methods in qualitative terms.

The final part of the report, consisting of Section 7,

summarizes our results and recommends problems for further

research.

In addition, there is an Appendix describing three concurrency

control methods that do not fit into the framework of Sections

4-6. These methods are intellectually interesting, but appear

to be too inefficient for practical use.

Page -12- Distributed Database Concurrency Control
Section 2 Transaction Processing Model

2. Transaction Processing Model

A concurrency control algorithm is a component of a distributed

database management system (DDBMS). To understand how a

concurrency control algorithm operates, one must understand how

the algorithm fits into the overall DDBMS. In this section we

present a simple model of a DDBMS, emphasizing how the DDBMS

processes transactions. In later sections we shall describe

concurrency control algorithms in terms of this model.

2.1 Preliminary Definitions

Distributed Database Management-System

In this report, let us consider a distributed database

management system (DDBMS) to be a collection of sites

interconnected by a network. Each site is a computer running

one or both of the following software modules: a transaction

manager (TM) or a data manager (DM). Briefly, TMs supervise

user interactions with the DDBMS while DMs manage the actual

database.

ALA

Distributed Database Concurrency Control Page -13-
Transaction Processing Model Section 2

A network is a computer-to-computer communication system. Sites

communicate by sending messages through the network. The

network is assumed to be perfectly reliable -- if site A sends a

message to site B, site B is guaranteed to receive the message

without error. In addition, we assume that between any pair of

sites the network delivers messages in the order they were sent

-- if site A sends two messages to site B, site B is guaranteed

to receive the first message sent by A before the second.

Network reliability and message sequencing are often implemented

in software running at the sites themselves; the details of this

software will not be considered in this report.

Database

Databases in practice are large, structured collections of

information. For purposes of concurrency control database

structure can be ignored, and a very simple database model may

be adopted.*

From a user's perspective, a database consists of a collection

of logical data items, denoted X,Y,Z,... We leave the

*In principle, database structure can be exploited to
improve the performance of concurrency control algorithms.
For example, (SKI describe special concurrency control
algorithms for certain kinds of tree-structured data.
Database structure is not exploited, however, by
general-purpose concurrency control algorithms at the
present state-of- the art.

A|

Page -14- Distributed Database Concurrency Control

Section 2 Transaction Processing Model

granularity of logical data items unspecified. In practice,

logical data items may be files, records, fields of files, or

the like. In this report, the reader may think of logical data

items as global variables in the style say of FORTRAN. A

logical database state is an assignment of values to the logical

data items comprising a database.

Each logical data item may be stored at any DM in the system or

redundantly at several DMs. A stored copy of a logical data

item is called a stored data item and we use x,,..., xm to

denote the stored copies of logical data item X. When no

confusion is possible we use the term data item in place of

stored data item. A stored database state is an assignment of

values to the stored data items of a database.

The impact of redurdant data has been misunderstood in most

previous work on concurrency control. We will see that

redundant data adds little to the complexity of the concurrency

control problem, once the problem is understood in proper terms.

Intuitively, there is little difference between one logical data

item X with m copies xl,... xm as opposed to m logical data

items X 1 ..., Xm with one copy each. The issue of data

redundancy will appear up from time to time in this report, but

it is not a major source of complexity.

Transactions

-- _ _

Distributed Database Concurrency Control Page -15-
Transaction Processing Model Section 2

Users interact with the DDBMS by executing transactions.

Transactions come in many different forms. They may be on-line

queries expressed in a self-contained query language (e.g. QUEL

[HSW]); they may be report generating programs coded in a report

writing language (e.g., RPG); or they may be application

programs written in a general-purpose programming language

augmented with data manipulation commands (e.g. COBOL augmented

with CODASYL DML[Date]).

The concurrency control algorithms we study in this report pay

no attention to the computations performed by transactions.

Instead these algorithms are only concerned with the data

accessed by transactions.* That is, these algorithms make all of

their decisions based solely on the data items a transaction

reads and the data items it writes. Consequently, the detailed

form of transactions is unimportant in our analysis.

The only properties we assume of transactions are the following.

1. They represent complete and correct computations; that

is, each transaction if executed alone on an initially

consistent data base, would terminate, output correct

results, and leave the data base consistent.

*In principle, concurrency control performance can be

improved by exploiting the internal computations of
transactions. However this requires
automatic-program-understanding capabilities that are
beyond the state-of-the-art.

Page -16- Distributed Database Concurrency Control
Section 2 Transaction Processing Model

2. They obtain data from the data base by issuing READ

operations to the DDBMS and modify data by issuing

WRITE operations. The arguments to these commands are

logical data items, and it is the responsibility of the

DDBMS to choose one stored copy of each logical data

item for READs and to update all stored copies of each

logical data item for WRITEs.

We model a transaction as a sequence of READ and WRITE

operations, paying no attention to its internal computations.

The logical readset of a transaction is the set of logical data

items the transaction reads, and the logical writeset of a

transaction is the set of logical data items it writes. Stored

readsets and stored writesets are defined analogously. Two

transactions are said to conflict if the stored readset or

writeset of one intersects the stored writeset of the other. It

is a fundamental theorem of concurrency control that two

transactions require synchronization only if they conflict.

Correctness of a ConcurrencSy Control Method

The correctness of a concurrency control algorithm is defined

relative to user expectations regarding transaction execution.

There are two correctness criteria.

First, users expect that each transaction submitted to the

system will eventually be executed. To meet this expectation

Distributed Database Concurrency Control Page -17-
Transaction Processing Model Section 2

the concurrency control algorithm must avoid deadlock,

indefinite postponement, and cyclic restart problems.

In addition, each user expects his transactions to execute

atomically, without interference from other transactions. The

computation performed by a transaction should be the same

regardless of whether it executes alone in a dedicated system or

in parallel with other transactions in a multi-programmed

system. The attainment of this expectation is the principal

issue in concurrency control. The bulk of this report is

devoted to this objective.

2.2 DDBMS Architecture

The architecture of our system model is illustrated in figure

2.1. There are four components: transactions, TMs, DMs, and

data. Transactions communicate with TMs, TMs communicate with

DMs, and DMs manage the data. Note that TMs do not communicate

with other TMs, nor do DMs communicate with other DMs. (We will

see minor exceptions to this strict partitioning in Section 4).

The interface between transactions and TMs is called the

external interface of the DDBMS; the interface between TMs and

DMs is called the internal interface.

TMs are responsible for supervising transactions. Each

transaction executed in the DDBMS is supervised by a sin.9e TM,

.--.

Page -18- Distributed Database Concurrency Control
Section 2 Transaction Processing Model

DDBI4S System Architecture Figure 2.1

transacti

transadata

transactin

transact ion

transaction

transactio

4 ---- -- - - - -- - - - - -- - - - -- - - --_- - - -

Distributed Database Concurrency Control Page -19-
Transaction Processing Model Section 2

meaning that the transaction issues all of its database

operations to that TM. Any distributed computation that is

needed to execute the transaction is managed by the TM.

Therefore from the perspective of any individual transaction,

the system consists of a single TM and multiple DMs. This view

of the system architecture is illustrated in figure 2.2.

Four operations are defined at the external interface. Let X be

any logical data item. READ(X) returns the value of X in the

current logical database state. WRITE(X, new-value) creates a

new logical database state in which X has the specified new

value. In addition, since transactions are assumed to represent

complete computations, we need BEGIN and END operations to

bracket transaction executions. The BEGIN and END issued by a

transaction tell that transaction's TM when it starts and

finishes executing.

DMs are responsible for managing the stored database,

functioning essentially as back-end database processors. In

response to commands from transactions, THs issue commands to

DMs specifying stored data items to be read or written. The

details of the TM-DM interface constitutes our core of a

transaction processing model. These details are discussed in

Sections 2.3 and 2.4.

In Section 2.3 we describe the TM-DM interaction in a

centralized database environment. In Section 2.4 we extend the

discussion to a distributed database setting.

-- -- -- --

Page -20- Distributed Database Concurrency Control
Section 2 Transaction Processing Model

System Architecture as Seen by
Individual Transactions Figure 2.2

t~ana

transaction TM

1~1

• b "H

<% ----..... -....----.. . ----------- - ------1i 1: "
-

....------ "----------

'

-... ------- tlI

Distributed Database Concurrency Control Page -21-
Transaction Processing Model Section 2

2.3 Centralized Transaction Processing Model

A centralized DBMS.consists of one TM and one DM executing at

the same site. Transactions access the DBMS by issuing BEGIN,

READ, WRITE', and END operations, as described in Section 2.2.

These operations are processed as follows.,

When a transaction T issues its BEGIN operation, the TM

initializes a pryate orkspace for T. The private workspace

functions as a temporary buffer for values that T wishes to

write into the database, and as a cache for values that T reads

from the database.

When T issues a READ(X) operation, the TM checks the private

workspace to see if the workspace contains a copy of X. If the

workspace contains a copy of X, the value of that copy is

returned to T. Otherwise the TM issues a command to the DM

requesting that the stored copy, x of X be retrieved from the

database. This operation is denoted dm-read(x). The value

retrieved by the DM is given to T and is also placed into the

private workspace for future reference.

When T issues a WRITE(X, new-value operation), the TM again

checks the private workspace. If the workspace has a copy of X,

its value is updated to new-value; otherwise a copy of X with

4- - -. ___ __ _ ___ ____ ____ ___ ____ ___ _ -,-AL

Page -22- Distributed Database Concurrency Control
Section 2 Transaction Processing Model

that value is created and placed in the workspace. The new

value of X is not propagated to the stored database at this

time.

The only time the stored datarbase is updated is when T issues

its END operation. In response to the END operation, the TM

issues an operation denoted dm-write(x) for each logical data

item X updated by T. Each dm-write(X) operation requests that

the DM update the value of X in the stored database; the value

written into x is the value of the copy of x in T's local

workspace. When all dm-writes are processed, the execution of T

is finished, and the private workspace is discarded.

The DBMS is at liberty to restart T at any point before a

dm-write command has been processed. The effect of restarting T

is to obliterate its private workspace and to re- execute T from

the beginning. As we will see, many concurrency control

algorithms use transaction restarts as a tactic for attaining

interference-free executions. However, once a single dm-write

has been processed, T cannot be restarted. This is because each

dm-write permanently installs an update into the database, and

we cannot permit the database to reflect partial effects of

transactions.

External vs. Internal Operations

B*4

Distributed Database Concurrency Control Page -23-
Transaction Processing Model Section 2

it is important to distinguish the operations issued by

transactions from those that are applied to the database. From

the transactions' viewpoint, the operations that access the

database are READ and WRITE. However from the system's

viewpoint, most READ operations and all WRITE operations access

the private workspace; indeed from the system's viewpoint, END

is the operation that causes new values to be written into the

database.

Therefore when we say "a write (or a read) has been processed"

we must be careful to say who is doing the "writing" (or

*reading"). We use READ and WRITE to refer to the transactions'

operations, and dm-read and dm-write to refer to operations

against the stored database. READ and WRITE are external

operations; dm-read and dm-write are internal ones.

Correctness and Performance Issues

To be correct, the DBMS must only allow interference-free

executions. A trivial way to attain this goal is to execute

transactions serially, i.e., one at a time with no interleaving

of operations from different transactions. However system

resources would be poorly utilized by this approach and

transactions would suffer long delays while waiting to be

processed. For performance reasons, interleaving of operations

from different transactions is essential.

Page -24- Distributed Database Concurrency Control
Section 2 Transaction Processing Model

The challenge of concurrency control is to synchronize

interleaved operations so that these operations do not interfere

with each other.

Reliability Issues

A database system can fail in many ways and a detailed treatment

of reliability issues is beyond the scope of this report.

However, one particular reliability problem has a major impact

on concurrency control, namely the problem of atomic commitment.

The problem of atomic commitment is the following. Consider a

transaction T that updates data items x,y,z,... and suppose the

DBMS fails while processing T's END command. If this occurs, it

may be the case that some of T's updates have been installed

into the stored database while others have not. For example,

the DBMS may have crashed after processing the dm-write for x,

but before processing the dm-writes for y,z,... As a result,

the database will contain incorrect information. Figure 2.3

illustrates this phenomenon.

To avoid this problem, the DBMS must have the ability to

"atomically commit" all of a transaction's dm-writes. I.e., the

DBMS needs a mechanism for ensuring that all of a transaction's

dm-writes are processed or none are.

The "standard" way to implement atomic commitment involves a

procedure called two-phase commit.* Again consider a transaction

Distributed Database Concurrency Control Page -25-
Transaction Processing Model Section 2

--
The Need for Atomic Commitment Figure 2.3

-Consider a database of banking information

-Suppose Acme Corp. 1s savings account has $2,000,000 and its checking
account has $500,000. And suppose the DBMS fails while processing the
following transaction.

T: Move $1,000,000 from savings to checking

-In the absence of atomic commitment, the following incorrect execution
could occur.

Execution of T Database

READ savings S $2,000,000 500,00
READ checking 500,000

Subtract $1,000,000 from savings
Add $1,000,000 to checking

E 000000C 1, 500,000

WRIITEsaig

-- SYSTIM CRASHES -

WRITE checking --- never executed

- -
IiLe~ J ilJ l eI.DI Doll el e! eol e~le l Oe.e. l

Page -26- Distributed Database Concurrency Control
Section 2 Transaction Processing Model

T that is updating x,y,z,... When T issues its END command, the

first p.a.s of two-phase commit begins. During this phase the

DM copies the values of x,y,z,... from T's private workspace,

placing these values in secure storage (typically magnetic

tape). If the DBMS should happen to fail during the first

phase, no harm is done, since none of T's updates have yet been

applied to the stored database.

During the second phase, the DBMS copies the values of x,y,z,...

into the stored database. If the DBMS fails during the second

phase, the database may contain incorrect information. However

since the values of x,y,z,... are stored on secure storage, this

inconsistency can be rectified when the system recovers: the

recovery procedure reads the values of x,y,z,... from secure

storage and resumes the commitment activity.

We will see in Section 2.4 that atomic commitment is harder to

implement in a distributed DBMS. As a prelude to that

discussion it is convenient to introduce a third TM-DM

operation; called p.e-commit. This operation instructs the DM

to copy a data item from the private workspace to secure

*The term "two-phase commit" is commonly used to denote

the distributed version of this procedure, which we
describe in the next section. However, since the
centralized and distributed versions are essentially
identical in structure, we use "two-phase commit" to
describe both.

Distributed Database Concurrency Control Page -27-
Transaction Processing Model Section 2

storage. (Pre-commit is short for

prepare-to-atomically-commit).

Summa .y of Centralized Transaction Processing Model

We may summarize our model of transaction processing in a

centralized DBMS as follows. Let T be a transaction.

1. When T issues its BEGIN operation, the TM creates a

private workspace for T.

2. When T issues a READ(X) operation, there are two cases:

(i) if the private workspace contains a copy of X, the

value of that copy is given to T; else (ii) the TM

issues a dm-read(X) operation to the DM which retrieves

the stored value of X from the database.

3. When T issues a WRITE(X, new-value) operation, there

are also two cases: (i) if the private workspace

contains a copy of X, the value of that copy is changed

to new-value; else (ii) a copy of X with that value is

created.

4. When T issues its END operation, two-phase commit

begins. For every logical data item X updated by T,

the TM issues a pre-commit(X) to the DM. This causes

the DM to copy the value of X from the private

workspace to secure storage. After all pre-commits are

processed, the TM issues a dm-write(x) operation for

every X updated by T. This causes the DM to update the

'9./-

Page -28- Distributed Database Concurrency Control
Section 2 Transaction Processing Model

value of X in the stored database to the value of X in

secure storage.

After all dm-writes are processed, T is finished.

2.4 Distributed Transaction Processing Model

A distributed database system has many TMs and many DMs

configured as per Section 2$.2. As described in that section,

each transaction executed in the system is supervised by a

single TM. Frcm the perspective of an individual transaction,

therefore, the DDBMS consists of one TM and multiple DMs.

Our model of transaction processing in a distributed environment

is similar 'n outline to the centralized case. The main

differences lie in two areas: how private workspaces are

handled, and the implementation of two-phase commit.

Private Worksacs_ in a DDBMS

In a centralized DBMS we assumed that private workspaces were

part of the TM. We also assumed that data could freely move

between a transaction and its workspace, and between a workspace

and the DM.

These assumptions are not appropriate in a distributed

environment because TMs and DMs often run at different sites.

Distributed Database Concurrency Control Page -29-
Transaction Processing Model Section 2

The movement of data between a TM and a DM often entails

inter-site communication which can be quite expensive. To

reduce this cost, many DDBMSs employ gue.y__9ptimization

procedures which regulate (and hopefully reduce) the flow of

data between sites [ESW, GBWRR, HY Willcox, Wong].

For example, in SDD-l the private workspace for a transaction T

is not usually located at the same site as T's TM [GBWRR].

Instead, the workspace is distributed across all sites at which

T accesses data. Although conceptually this workspace is

controlled by T's TM, it is misleading to say that the workspace

is part of the TM. The details of how T reads and writes data

in these workspaces is a guery optimization problem, and has no

direct effect on concurrency control. Consequently, we factor

this issue out of our model for distributed transaction

processing.

The resulting transaction processing model is summarized below.

Summary of Distributed Transaction Processin Model

Let T be a transaction. T is processed in a DDBMS as follows.

1. When T issues its BEGIN operation, T's TM creates a

private workspace for T. The location and organization

of this workspace is not specified in the model.

2. When T issues a READ(X) operation, the TM checks the

private workspace to see if a copy of X is present. If

Ilk,

Page -30- Distributed Database Concurrency Control
Section 2 Transaction Processing Model

so, the value of that copy is made available to T.

Otherwise the TM selects some stored copy of X, say xi,

and issues a dm-read(x i) operation to the DM at which i
x. is stored. The DM responds by retrieving the stored

1

value of xi from the database, placing this value in

the private workspace. The TM then makes this value

available to T.

3. When T issues a WRITE(X, new-value) operation, the

value of X in the private workspace is updated to

new-value, assuming the workspace contains a copy of X.

Otherwise, a copy of X with the new value is created in

the workspace.

4. When T issues its END operation, two-phase commit

begins. For each logical data item X updated by T, and

,for each stored copy xi of X, the TM issues a

pre-commit(x i) operation to the DM that stores xi. The

DM responds by copying the value of X -from T's private

workspace, placing this value onto secure storage

internal to the DM. After all pre-commits are

processed, the TM issues dm-write operations for all

copies of all logical data items updated by T. A DM

responds to dm-write(xi) by copying the value of xi

from secure storage, into the stored database.

__ _ ___ _ _ __ _ _

Distributed Database Concurrency Control Page -31-
Transaction Processing Model Section 2

-When all dm-writes have been processed, the execution of T is

complete.

This transaction processing model is more abstract than the

centralized model, and it leaves many details unspecified. For

example, we do not specify where the private workspace is

located; we also do not specify how the TM checks the workspace

to see if a copy of X is present; nor do we specify how data

moves between T and its workspace, and between DMs and the

workspace.

These details are important to overall DDBMS functioning, but

are not important insofar as concurrency control is concerned.

We ignore these issues because they render our transaction

processing model both simpler and more general.

This transaction processing model is used in the remainder of

this report as a framework for describing and analyzing

concurrency control algorithms.

Two-Phase Commit in a DDBMS

The problem of atomic commitment is aggravated in a DDBMS by the

possibility of one site failing while the remainder of the

system continues to operate.

Consider a transaction T that is updating data items x,y,z,...

stored at DMX, DMy, DMz,... respectively. Suppose T's TM fails

____ ___ _ __ ___ ____ ___ ___ ____ ___ -- - ----------- .

Page -32- Distributed Database Concurrency Control
Section 2 Transaction Processing Model

during the second phase of two-phase commit. For example,

suppose the TM fails after issuing the dm-write(x) operation,

but before issuing dm-write(y), dm-write(z),... At this point,

the database contains incorrect information: the database

stored at DMx reflects the execution of T, but the databases at

DMy, DMZ,... do not. In a centralized DBMS, this phenomenon is

not harmful because no transaction can access the database until

the TM recovers from the failure. However, in a distributed

DBMS, other TMs remain operational, and the incorrect database

can be accessed from these TMs.

To avoid this problem, each DM that receives a pre-commit must

be able to determine which other DMs are involved in the

commitment activity. (This information could be included as a

parameter to the pre-commit operation, or it could be stored in

a private workspace, etc.) If T's TM fails before issuing all

dm-writes, the DMs whose dm-writes were not issued can recognize

the situation. These DMs then consult all DMs involved in the

commitment to determine whether any DM received a dm-write. If

any DM received a dm-write, the remaining ones act as if they

had also received the command. Thus, if any DM applies an

update to the database, they all do.

This commitment algorithm is described in greater detail in

[HS2j.

1- - -_ _ _ _ -_ _ _ -. -- --- --- ___ ___ ___ __

Distributed Database Concurrency Control Page -33-
Concurrency Control Theory Section 3

3. Concurrency Control Theory

In this section we review the mathematical theory of concurrency

control with two objectives: to define the correctness of a

concurrency control method in precise terms,; to decompose the

concurrency control problem into more tractable sub-problems.

In Section 3.1 we present a mathematical definition of

interference - free executions and in Section 3.2 we present a

concise characterization of these executions. Section 3.3 uses

this characterization to decompose the concurrency control

problem into two major sub-problems - read-write synchronization

and write-write synchronization. This decomposition is the

cornerstone of our approach to the analysis and design of

distributed concurrency control algorithms.

3.1 Serializability

The intuitive notion of an interference-free execution is

modelled mathematically by the concept of serializability.

Serializability is the formal notion of correctnes in database

concurrency control.

Page -34- Distributed Database Concurrency Control
Section 3 Concurrency Control Theory

Consider a collection of transactions, T1 ,..., Tn, and let E

denote an execution of these transactions. E is called a serial

execution if no transactions ever execute concurrently in E --

i.e., each transaction is executed to completion before the next

one begins. Every serial execution is defined to be correct.

To justify this notion of correctness, we observe that the

properties of correct transactions (see Section 2.1) imply that

a serial execution terminates properly and preserves database

consistency. An execution is serializable if it is

computationally equivalent to a serial execution. That is, a

serializable execution produces the same output and has the same

effect on the database as some serial execution. Since serial

executions are correct and every serializable execution is

equivalent to a serial one, every serializable execution is also

correct. The goal of database concurrency control is to allow

only serializable executions to occur.

3.2 Characterizing Serializability

The only operations that access the stored database are dm-read

and dm-write. Only the relative order of dm-reads and dm-writes

on behalf of different transactions can affect the computation

performed by those transactions. So, insofar as serializability

is concerned, it is sufficient to model an execution of

transactions by the execution of dm-read and dm-write operations

at the various DMs of the DDBMS.

4 -____ ____ ____ ____ ___

Distributed Database Concurrency Control Page -35-
Concurrency Control Theory Section 3

In this spirit, we formally model an execution of transactions

by a set of logs, one log per DM. Each log indicates the order

in which dm-reads and dm-writes are processed at one DM. Figure

3.1 illustrates several logs. Mathematically, we define a lo

as a string of dm-read and dm-write operations. Modelling an

execution as a set of logs is the first step in understanding

serializability.

According to Section 3.1, an execution is serializable if it is

computationally equivalent to a serial execution of the same

transactions. To model this statement using logs, we must state

the conditions under which a set of logs models a serial

execution and the conditions under which two sets of logs are

computationally equivalent.

3.2.1 Serial Executions

An execution modelled by a set of logs is serial if

1. for each log, and for each pair of transactions Ti and

Tj whose operations appear in the log, either all of

Ti's operations precede all of Ti's operations, or vice

versa; and

2. for each pair of transactions, Ti and Tj, if Ti's

operations precede Tj's operations in one log, then

)J

Page -36- Distributed Database Concurrency Control
Section 3 Concurrency Control Theory
---- --
Modelling Executions as Logs Figure 3.1

Transactions Database

Tl: BEGIN;
READ(X); WRITE(Y); END

T2: BEGIN; BRTE) 2

T3 : BEGIN; WRT0;ED

One possible execution of T1, T2, and T3 is represented by the following
logs. (Note: rj[x] denotes the operation du-read(x) issued by Ti;

wi[x] has the analogous meaning)

Log for DM A: rl(x11 wl[yl1 r2[yl] w3[xl]

Log for DM B: w 1 y2] w2(z21

Log for DM C: v2(z3] r3[z3]

---- --

Distributed Database Concurrency Control Page -37-
Concurrency Control Theory Section 3

T 's operations precede. Tj's operations in every log in

which operations from both Ti and Tj appear.

These conditions are illustrated in figure 3.2. Intuitively,

condition (1) says that at each DM no two transactions are

interleaved. Condition (2) says that transactions execute in

the same order at all D~s. More precisely, condition (2) says

there is a total ordering of transactions, that is consistent

with the non-interleaved (i.e., serial) ordering at each DM.

3.2.2 Equivalent Executions

Two operations conflict if they operate on the same data item

and one of the operations is a dm-write. The" order in which

operations execute is computationally significant if and only if

the operations conflict. That is, if two operations conflict

the order in which they execute will (in general) affect the

computation they perform, while if two operations do not

conflict, the order in which they execute never affects the

computation.

To illustrate the notion of conflict, consider a data item x and

transactions Ti and Tj. If Ti issues a dm-read(x) and Tj issues

a dm-write(x), the value read by Ti will (in general) be

different depending on whether the dm-read precedes or follows

Wallowa~_

Page -38- Distributed Database Concurrency Control
Section 3 Concurrency Control Theory

Serial and Non-Serial Logs Figure 3.2

The execution modelled in figure 3.1 is serial. Condition (1) holds since
each log is itself serial--i.e., there is no interleaving of operations
from different transactions. Condition (2) holds since at DM A, T1 precedes
T2 precedes T3; at DM B T1 precedes T2 ; and at DH C, T2 precedes T3.

-The following execution is not serial; it satisfies (1) but not (2).

DM A: rl[xl] wl[y I] r2[yl] w3(x1]

DM B: w2 [z2] wl[y 2]

DM C: w2[z3] r3 [z3]

.The following execution is also not serial; it doesn't satisfy (1) or (2).

DM A: rlfXl] r2(Yl] w3[xI] wlry I]

DM B: w2[z2] wl[y 2]

DM C: w2 [z 3] r3[z 3]

--

Diatributed Database Concurrency Control Page -39-
Cenourteeay Cont ol Theory Section 3

the dm-write. Similarly, if both transactions issue dm-write(x)

operations, the final value of x depends on which dm-write

happens last. Those conflict situations are called read-write

conflicts and write-write conflicts respectively.

On the other hand, if Ti and Tj both issue dm-read(x)

operations, the value read is not affected by the order in which

these dm-reads are executed. Similarly, if Ti reads x and Tj

writes into a different data item y, or if Ti writes x and Tj

writes y, the order of execution does not affect the results.

These are, of course, non-conflict situations.

The notion of conflict can be used to characterize the

equivalence of executions.

Let E1 and E2 be two executions, modelled by the logs {LII,...,

Li,n} and {L2 ,1 ,... L2,n } respectively, where Li,j models the

execution at DMj for Ei. El and E2 are computationally

equivalent if the following condition holds [PBR,

PapadimitrioJ]: for each j, l<j<n, Ll, j and L2 ,j contain the

same set of dm-reads and dm-writes and each pair of conflicting

operations appears in the same relative order in both logs.

Intuitively, computational equivalence must hold in this case

for two reasons:

Page -40- Distributed Database Concurrency Control
Section 3 Concurrency Control Theory '

1. each din-read operation reads data item values that were

produced by the same din-writes in both executions; and

2. the final din-write on each data item is the same in

both executions.

The tirst condition ensures that each transaction reads the same

input in both executions (and therefore performs the same

computation). Combining this with the second condition, we can

conclude that both executions leave the database in the same

final state.

3.2.3 Serializable Executions

Using our formal concepts of serial execution and computational

equivalence, we can now characterize serializable executions.

The following theorem states the characterization precisely.

Th .eorem 1 [PBR, Papadimitriou, SLR] Let T={Tl TnO be a set

of transactions and let E be an execution of these transactions

modelled by the set of logs {Ll1 Ln). E is serializable if

there exists a total ordering of T such that for each pair of

conflicting operations Oi and O* from distinct transactions Ti

and T. (resp.), 0i precedes Oj in a log iff Ti precedes Tj in

the total ordering.

4--7

Distributed Database Concurrency Control Page -41-
Concurrency Control Theory. Section 3

The total order hypothesized in Theorem 1 is called a

serialization order. A serialization order indicates a serial

execution of the transactions T that is computationally

equivalent to the original execution E. That is, if the

transactions had executed serially in the hypothesized order,

then the computation performed by the transactions would have

been identical to the computation represented by E. The main

step in proving the theorem is to observe that the theorem

requires that conflicting operations appear in the same order in

E as in the hypothetical serial execution; the equivalence of E

and the serial execution follows from Section 3.2.2.

To attain serializability, the DDBMS must guarantee that all

executions satisfy the condition of Theorem 1. Those conditions

require that conflicting dm-reads and dm-writes be processed in

certain relative orders. Concurrency control is the activity of

controlling the relative order of conflicting operations; an

algorithm to perform such control is called a synchronization
technigue. So, to be correct, a DBMS must incorporate

synchronization techniques that guarantee the conditions of

Theorem 1.

C,1

Page -42- Distributed Database Concurrency Control
Section 3 Concurrency Control Theory

3.3 A Paradigm for Concurrency Control

In Theorem 1, read-write conflicts and write-write conflicts are

treated together under the general notion of conflict. Viewed

together, they contribute equally to the serializability of an

execution. However, we can decompose the concept of

serializability by distinguishing these two types of conflict.

To do so, we first introduce additional notation.

3.3.1 The -> Relation

Let E be an execution modelled by a set of logs. We define

three binary relations on transactions in E, denoted ->rw, ->wr,

and ->ww. For each pair of transactions, Ti and Tj

1. Ti ->rwTj iff in some log of execution E, Ti reads some

data item into which Tj subsequently writes;

2. T. ->wr Tj iff in some log of execution E, Ti writes

into some data item that Tj subsequently reads;

3. Ti ->wwTj iff in some log of execution E, Ti writes

into some data item into which Tj subsequently writes.

• "m III:I

Dis~kibu~ed babiiW fti@itOhcy @bf0 &e a;43-

Concurrency Control tfhidty Section 3

We denote the union of the first two relations by ->rwr, i.e.,

->rwr - (->rw U ->wr). The union of all three relations is

denoted ->.

Intuitively, we can interpret -> (with any subscript) to mean

"in any serialization must precede". For example, Ti ->rw Tj

means "Ti in any serialization must precede Tj". From Theorem

1, we can see why this interpretation is accurate. If Ti reads

some data item x before Tj writes into x, then the hypothetical

serialization in Theorem 1 must have Ti preceding Tj.

Every conflict between operations in E is represented by an ->

relationship. Therefore, we can restate Theorem I in terms of

->. According to Theorem 1, E is serializable if there is a

total order of transactions that is consistent with the order of

all conflicts. In terms of ->, this means that E is

serializable if there is a total order of transactions that is

consistent with all -> relationships. This latter condition

holds iff -> is acyclic(A relation1 .-> is:acyclic if there is

no sequence i1 -> -> 13,., in such that i1 - in.) WeIi -> ' 01 > ' 0...Ii

state this conclusion as Theorem 1' [BSWI.

ThgOreg-11 E is serializable if it has an acyclic -> relation.

Page -44- Distributed Database Concurrency Contxol
Section 3 Concurrency Control Theory

3.3.2 Distinguishing Read-Write from Write-Write

Synchronization

The advantage of Theorem 11 over Theorem 1 is that we can

decompose -> into its components, ->rwr ,and ->ww, and restate

the theorem in terms of these components.

Theorem 2 Let ->rwr and ->ww be associated with execution E.

Then E is serializable if (a) ->rwr and ->ww are acyclic, and

(b) there is a total ordering of the transactions that is

consistent both with all ->rwr relationships and all ->ww

relationships.

Theorem 2 is equivalent to Theorems 1 and 1', but it emphasizes

a point that is overlooked in the earlier theorems: read-write

and write-write conflicts interact only insofar as there must be

a total ordering of the transactions consistent with both types

of conflicts. This suggests that read-write and write-write

conflicts can, to some extent, be synchronized independently.

Herein lies the significance of Theorem 2.

Theorem 2 tells us that we can use different techniques for

synchronizing read-write and write-write conflicts within a

single system. One technique can be used to guarantee an

'9-- ---------- __________________

Distributed Database Concurrency Control Page -45-
Concurrency Control Theory Section 3

acyclic ->rwr relation (which amounts to read-write

sgynchronization) while a different technique is used to

guarantee an acyclic ->ww relation (write-write

gynchronization). However, Theorem 2 says that having both

->rwr and ->ww acyclic is not enough. There must also be one

serial order that is consistent with all -> relations. This

serial order is the cement that binds together the read-write

and write- write synchronization techniques.

The decomposition of the serializability problem into the

problems of synchronizing read-write and write-write conflicts

is the cornerstone of our paradigm for understanding distributed

DBMS concurrency control.

This paradigm tells us that every correct concurrency control

algorithm can be analyzed as a composition of a read-write and a

write-write synchronization technique. The paradigm focuses

attention on the "essence* of each synchronization technique --

namely the way in which the technique guarantees an acyclic

->rwr or ->ww relation. The paradigm permits us to analyze each

technique in the abstract, outside the context of any complete

concurrency control method. And the paradigm guides us in the

design of new concurrency control methods, by explaining how

read-write and write-write synchronization techniques must be

"glued" together to form a correct method.

5 . -.

Page -46- Distributed Database Concurrency Control
Section 4 Synchronization TechniquesA

4. Synchronization Techniques

This section begins the technical body of the report. In this

section and the next we describe a large number of concurrency

control algorithms.

In section 6 we examine the performance of those algorithms.

Our presentation is structured by the paradigm of Section 3.3.

We decompose the overall concurrency control problem into two

major sub-problems: rw synchronization and ww synchronization.*

In Section 4 we describe algorithms that accomplish rw and/or ww

synchronization, then in Section 5 we show how to combine rw and

ww synchronization algorithms into a correct control algorithm.

It will be important in the remainder of this report to

distinguish algorithms that attain rw and/or ww synchronization

from algorithms that solve the entire concurrency control

problem in a distributed database environment. We shall use the

term synchronization technigue for the former type of algorithm,

and concurrency control method for the latter.

*Hereafter we use "rw" and Uww" as abbreviations for
aread-write" and "write-write" respectively.

- . ._._._.....

Distributed Database Concurrency Control Page -47-
Synchronization Techniques Section 4

All practical concurrency control methods can be analyzed as

combinations and variations of two basic synchronization

techniques: two phase lockiEn (2PL) and timestampordering

(TO). (Two-phase locking should not be confused wth two-phase

commit.) 2PL is studied in Section 4.1, and T/0 is studied in

Section 4.2. In each section we present an

implementation-independent specification of the synchronization

techniques, followed by an implementation that we deem to be the

basic implementation of the technique, followed by

implementation alternatives. We have attempted to list the

major implementation alternatives for each technique, but do not

claim to have exhausted all possible variations. In addition,

we consider ancillary problems that must be solved to make each

implementation effective.

Page -48- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

4.1 Two Phase Locking (2PL)

4.1.1 Specification

Two phase locking synchronizes read and write operations by

explicitly detecting and preventing conflicts between concurrent

operations. Before reading a data item x, a transaction must

*own" a read-lock on x. Before a transaction may write into x,

it must "own" a write-lock on x. The ownership of locks is

governed by two rules:

1. Different transactions cannot simultaneously own locks

that conflict (defined below): and

2. Once a transaction surrenders ownership of a lock, it

may never obtain additional locks.

The definition of conflicting lock depends upon the type of

synchronization being performed. For rw synchronization two

locks conflict iff (a) both are locks on the same data item x,

and (b) one is a read-lock and the other is a write lock. For

ww synchronization two locks conflict iff (a) both are locks on

the same data item, and (b) both are write-locks.

4. . ~ -__ ___

Distributed Database Concurrency Control Page -49-
Synchronization Techniques Section 4

The second lock ownership rule causes every transaction to

obtain locks in a two phase manner. During the first phase,

called the growinqphase, the transaction obtains more and more

locks without releasing any locks. By releasing a lock, the

transaction enters the second phase, called the shrinking phase.

During the shrinking phase the transaction releases more and

more locks, and by rule 2, is prohibited from obtaining

additional locks. When the transaction terminates (or aborts)

all remaining locks are automatically released.

Several authors have proven that 2PL is a correct

synchronization technique, meaning that 2PL attains an acyclic

->rwr (resp. ->ww) relation when used for rw (resp. ww)

synchronization (EGLT, BSW, Papadimitrioul. The serialization

order attained by PL is determined by the order in which

transactions obtain locks. At the end of the growing phase, a

transaction owns all locks that it ever will own. This point in

time is called the locked point of the transaction [BSW]. Let E

be an execution in which ZPL is used for rw (resp. ww)

synchronization. We can prove that the ->rwr (resp. ->ww)

relation induced by E is identical to the relation induced by a

serial execution E' in which all transactions execute at their

locked points. Thus, the locked points of E determine a

serialization order for E.

I.

Page -50- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

4.1.2 Basic Implementation

An implementation of 2PL amounts to building a 2PL scheduler, a

software module that receives loc%-request and lock-release

operations and processes these operations Ln accordance with the

2PL specification.

The basic way to implement 2PL in a distributed database is to

distribute the schedulers alonj with the database, i.e., the

scheduler for data item x is located at the DM where x is

stored. In this implementation read-locks may be implicitly

requested by dm-read operations and write-locks may be

implicitly requested by pre-commit operations. If the requested

lock cannot be granted, the operation is placed on a waiting

queue for the desired data item. (This introduces the

possibility of deadlock; see Sections 4.1.6-4.1.8) Write-locks

are implicitly released by dm-write operations. However, to

release read-locks special lock-release operations are required.

These lock-release operations may be transmitted in parallel

with the dm-write operations, since the dm-writes signal the

start of the shrinking phase. When a lock is released, the

operations on the waiting queue for that data item are processed

in FIFO order. In some cases it may be preferable to process

_____ A

Distributed Database Concurrency Control Page -51-
Synchronization Techniques Section 4

waiting operations in non-FIFO order; this issue is discussed in

Section 4.1.10.

Notice that this implementation of 2PL pays no special attention

to redundant data. Suppose a logical data item X is stored

redundantly at m sites and let xl,...,Xm be the stored copies of

X. If basic 2PL is used for rw synchronization, a transaction

may read any copy of X and need only obtain a read-lock on the

copy of X it actually reads. However, if a transaction updates

X, it must obtain write-locks on all copies of X, since the

transaction must update all copies of X. This latter

observation holds whether basic 2PL is used for rw or ww

synchronization.

An important advantage of the basic implementation is that

little "extra" communication between TMs and DMs is required to

synchronize transactions. The only extra communication needed

by this technique are the operations that release read-locks.

4.1.3 Primary Copy 2PL

Primarycopy_2PL differs from the preceding technique in that it

pays attention to data redundancy [Stonebracker]. One copy of

each logical data item is designated the primary cy of the

data item; before accessing any,_opy of the logical data item,

the appropriate lock must be obtained on the primary copy.

Page -52- Distributed Database Concurrency Control

Section 4 Synchronization Techniques

In the case of read-locks, this technique requires more

communication than basic 2PL. Suppose x1 is .the primary copy of

logical data item X, and suppose transaction T wishes to read

some other copy of X, e.g. xi. To read x i under primary copy

2PL, transaction T must communicate with two DMs -- the DM where

x, is stored (so T can lock xl) and the DM where xi is stored.

By contrast, under basic 2PL T would only communicate with xils

DM. In the case of write-locks, however, primary copy 2PL does

not incur extra communication. Suppose transaction T wishes to

update X. Under basic 2PL, T would issue pre-commits to all

copies of X -- thereby requesting write-locks on these data

items -- and then would issue dm-writes to all copies. Under

primary copy 2PL the same operation sequence would be required;

the only difference is that under primary copy 2PL the

pre-commits to x2 ..., Xm do not serve to request write-locks on

these data items.

This suggests that primary copy 2PL may be better than basic 2PL

for ww synchronization, but not for rw synchronization. As we

shall see in Section 5, there is no difficulty in using basic

2PL for rw synchronization, while using primary copy for ww

synchronization.

.-.

Distributed Database Concurrency Control Page -53-
Synchronization Techniques Section 4

4.1.4 Voting 2PL

Voting2PL (also called maoi.ty__onsensus 2PL) is another 2PL

implementation that exploits data redundancy. Voting 2PL is

derived from the majority consensus technique of [Thomas 1,21,

and is only suitable for ww synchronization.

To understand the voting protocol, we need to examine it in the

context of two-phase commit. Suppose transaction T wants to

write into X. Its TM sends pre-commit operations to each DM

holding a copy of X. For the voting protocol, the DM always

responds immediately. It acknowledges receipt of the pre-commit

and says "lock set" or "lock blocked". (In the standard locking

protocol, it would not acknowledge at all until the lock is

set.) After the TM receives acknowledgements from the DMs, it

counts the number of "lock set" responses. If a majority of the

DMs responded "lock set", then the TM behaves as if all locks

were set; i.e., it enters the second commit phase and issues

dm-writes. Otherwise, it waits for additional "lock set"

operations from DMs that originally said "lock blocked".

Deadlocks aside (see Section 4.1.8), it will eventually receive

enough "lock set" operations to proceed.

Page -54- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

Since only one transaction can hold a majority of locks on X at

a time, only one transaction writing into X can be engaged in

its second commit phase at any time. So, all copies of X will

have the same sequence of writes applied to them. Thinking in

terms of locked points, we see that a transaction's locked point

occurs when it has obtained a majority of its write locks on

each data item in its writeset.

When many data items are being updated by a transaction, the

transaction must obtain a majority of locks on each and every

data item before it commits any of its writes.

4.1.5 Centralized 2PL

Instead of distributing the 2PL schedulers with the database, it

is possible to centralize the scheduler at a single site [AD,

G-M2]. Before accessing data at any site, appropriate locks

must be obtained from the centralized 2PL scheduler. So, for

example, to perform dm-read(x) where x is not stored at the

central site, the TM must first request a read-lock on x from

the central site; after the central site acknowledges to the TM

that the lock has been set, the TM can send dm-read(x) to the DM

that holds x. (It is possible to save some communication by

having the TM send the lock request and dm-read(x) to the

central site; the central site directly forwards the dm-read(x)

Distributed Database Concurrency Control Page -55-
Synchronization Techniques Section 4

to x's DM instead of acknowledging the setting of the lock to

the TM; the DM then responds to the TM when the dm-read(x) has

been processed.) Like primary copy 2PL, this approach tends to

require more communication than basic 2PL, because dm-reads and

dm-writes usually cannot implicitly request locks.

The advantages and disadvantages of centralized 2PL are

discussed further in Section 6.

4.1.6 Deadlock

The preceding implementations of 2PL force transactions to wait

for unavailable locks. If this waiting activity is

uncontrolled, the possibility of deadlock exists; see figure

4.1. In this section we define a mathematical construct called

a waits-for gaph that is useful in characterizing deadlock

situations [KC] . In Section 4.1.7-4.1.9 we use this construct

to describe techniques for handling deadlocks.

A waits-for graph is a directed graph that indicates which

transactions are waiting for which other transactions. The

nodes of the graph represent transactions. The edges represent

the "waiting-for" relationship. An edge is drawn from

transaction Ti to transaction Tj if Ti is waiting for a lock

currently owned by Tj. There is a deadlock in the system if and

Page -56- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

Deadlock Figure 4.1

Transactions Database

TI: BEGIN; 1
READ(X); WRITE(Y); END [ii1- Y.

T2 : BEGIN; -2
READ(y); WRITE(Z); END

T3: BEGIN; E ---
READ(Z); WRITE(X); END

• Suppose transactions execute concurrently, with each transactions issuing
its READ before any transaction issues its END.

-This partial execution could be represented by the following logs.

DM A: rl[x I]

DM B: r2[y2]

DM C: r3[z3]

'At this point, TI has read-lock on x1
T2 has read-lock on Y2
T3 has read-lock on z3

-Before proceeding, all transactions must obtain write-locks.

T1 requires write-locks on Yl and Y2
T2 requires write-locks on z2 and z3
T3 requires write-lock on x1

* But,

Tl cannot get write-lock on Y2, until T2 releases read-lock
T2 cannot get write-lock on z3, until T3 releases read-lock
T3 cannot get write lock on xI, until T1 releases read-lock

•'. Deadlock!

--

Distributed Database Concurrency Control Page -57-
Synchronization Techniques Section 4

only if the waits-for graph contains a cycle, i.e., a path from

some node back to itself; see figure 4.2.

Two general techniques are available for deadlock resolution:

deadlock prevention and deadlock detection. These techniques

are described in the following sections.

4.1.7 Deadlock Prevention

Deadlock prevention is a "cautious" deadlock resolution scheme

in which a transaction is restarted when the system is "afraid"

that a deadlock might occur. To implement deadlock prevention,

the 2PL scheduler described in Section 4.1.2 is modified as

follows. If a lock request is denied, then the scheduler

applies a "test" to the requesting transaction (say Ti) and the

transaction that currently owns the lock (say Tj). If Ti and Tj

pass the test, Ti is permitted to wait for Tj as, usual.

Otherwise, one or the other transaction is aborted. If Ti is

restarted, the deadlock prevention algorithm is called non-

preemptive; if T. is restarted, the algorithm is called

The test applied by the scheduler must guarantee that if Ti is

forced to wait for Tj, then deadlock cannot result. I.e., we

must ensure that the addition of edge <Ti, Tj> to the waits-for

graph cannot introduce a cycle into the graph.

Page -58- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

(Waits-for Griph for Figure 4.1 Figure 4.2

T11T

must wait-for T2 to release read-lock
on Y2

T 2T 2

T3 must wait-for 2 must wait-for
to release read- T3 to release read-
lock on xl lock on Z3T3

-- - - - - - - - - - - - - - -- - - - - - - - - - - - - -

Distributed Database Concurrency Control Page -59-
Synchronization Techniques Section 4

Many tests have this property. one simple approach is to never

let Ti wait-for Tj -- i.e., the test always outputs *false".

This technique trivially prevents deadlock, but forces many

restarts.

A better approach is to assign priorities to transactions and to

test priorities to decide whether Ti can wait for Tj. For

example, we could let Ti wait for Tj iff Ti has lower priority

than Tj, (importantly, if Ti and.Tj have e qual priorities, Ti is

not permitted to wait-for Tj or vice versa). This test is

sufficient to provent deadlock for the following reason.

Imagine that we construct the waits-for graph of the system at

any point in time. Every edge in the graph is guaranteed to be

in priority order -- i.e., for all edges <Ti, Tj,> Ti has lower

priority than Tj. Since a cycle is a path from a node to itself

-- i.e., a path of the form <Ti, Tj,..., Tk, Ti> -- and since it

is impossible for Ti to have lower priority than itself, no

cycle can exist in the waits-for graph. Q.E.D.

One problem with the preceding approach is that cyclic restart

is possible, meaning that some unfortunate transaction could be

restarted, over and over again without ever finishing. To avoid

this problem, [RSL] propose a technique in which "timestamps"

are used to assign priorities. Intuitively, the timestamp of a

transaction corresponds to the time at which it begins

executing, and old transactions (ones that have been executing a

long time) have higher priority than young transactions.

Page -60- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

The technique of [RSL] requires that each transaction in the

distributed system be assigned a unisu9 timestamp. This

requirement is achieved as follows [Thomas 1,21. Timestamps are

assigned to transactions by their TMs. When a transaction

begins, its TM reads the local clock time and appends a unique

TM identifier to the low order bits. The resulting number is

the desired timestamp. The TM also agrees not to assign another

timestamp until the next clock tick. This technique ensures

that timestamps assigned by different TMs differ in their lo-.

order bits (because different TMs have different identifiers)

while timestamps assigned by the same TM differ in their high

order bits (because the TM does not use the same clock time for

two different timestamps). Thus, the timestamps generated by

this algorithm are unique system-wide. Notice that the

correctness of this algorithm does not require that clocks at

different sites be precisely synchronized.

Two timestamp-based deadlock prevention schemes are proposed by

[RSL]. One, called the Wait-Die System, is a non-preemptive

technique. Suppose transaction Ti tries to wait-for Tj. If Ti

has lower priority than Tj -- i.e., Ti is younger than Tj --

then Ti is permitted to wait. Otherwise Ti is aborted, i.e., it

"dies", and is forced to restart. It is important that Ti not

be assigned a new timestamp when it restarts. The other scheme,

called Wound-Wait is the preemptive counterpart to Wait-Die; if

Tj has higher priority than Tj, then Ti waits, otherwise Tj is

aborted.

Distributed Database Concurrency Control Page -61-
Synchronization Techniques Section 4

Both Wait-Die and Wound-Wait avoid cyclic restart, but they

behave quite differently: in Wound-Wait an old transaction may

be restarted many times, while in Wait-Die old transactions

never restart. It is suggested in (RSL] that Wound-Wait induces

fewer restarts in total, but the justification is more intuitive

than analytic.

Care must be exercised in using preemptive deadlock prevention

schemes in conjunction with two-phase commit. For two-phase

commit to operate properly, a transaction must not be aborted

once the second phase of two-phase commit has begun. Notice

that if the second phase of commitment has begun, the

transaction in question is guaranteed not to be waiting for any

other transactions, and so is guaranteed not to be involved in

any deadlocks. Therefore, if a preemptive technique wishes to

abort Tj, it first checks with Tj's TM to determine whether Tj

has entered the second phase of commitment. If Tj has entered

the second phase, no deadlock is possible and Tj is permitted to

complete; otherwise Tj is aborted.

.. ... 2

L.

Page -62- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

.1

4.1.8 Deadlock Detection

Deadlock detection is an alternative to deadlock prevention.

The idea is to let transactions wait-for each other in an

uncontrolled manner and only abort transactions if a deadlock

actually occurs. Deadlocks are detected by explicitly

constructing the waits-for graph of the system and searching for

cycles in that graph. (Cycles in a graph can be found

efficiently using, for example, Alg. 5.2 in [AHU]). If a cycle

is found, one of the transactions on the cycle is aborted,

thereby breaking the deadlock. The transaction that is aborted

is called the victim. To minimize the cost of restarting the

victim, victim selection is usually based on the amount of

resources used by each transaction on the cycle.

The principal difficulty in implementing deadlock detection in a

distributed database is constructing the waits-for graph

efficiently. Each 2PL scheduler can easily construct the

waits-for graph based on the waits- for relationships local to

that scheduler. However, these local waits-for graphs are not

sufficient to characterize all deadlocks in the distributed

system. Figure 4.3 illustrates such a case. Instead, it is

necessary to "combine" the local waits-for graphs into a more

Distributed Database Concurrency Control Page -63-
Synchronization Techniques Section 4

4Multi-site Deadlock Figure 4.3

Consider the execution illustrated in figures 4.1 and 4.2

-Locks are requested at DMs in the following order

DM A DM B DM C

read-lock x1 for T1 read-lock Y2 for T2 read-lock. Z3 for T3
write-lock yl for T1 write-lock Z2 for T

*write-.lock x, for T3 *write-1.ock y2 for T1 *write-1.ock X3for T2

-.None of the *'ed locks can be granted and the system is in deadlock.

However, the waits-for graphs at each DM are acyclic.

DM A U__B DM

Page -64- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

"global" waits-for graph. (Notice that centralized 2PL does not

have this problem, since there is only one scheduler in that

case.)

We shall describe two techniques for constructing global

waits-for graphs: centralized deadlock detection and

hierarchical deadlock detection.

Centralized Deadlock Detection

In the centralized approach, one site is designated the deadlock

detector for the distributed system (Gray, Stonebraker].

Periodically -- e.g., every few minutes -- each scheduler

transmits its local waits-for graph to the deadlock detector.*

The deadlock detector combines the local graphs into a

system-wide waits-for graph by constructing the union of the

local graphs.

Hierarchical Deadlock Detection

An alternative approach is hierarchical deadlock detection [MM].

In this approach the database sites are organized into a

hierarchy (or tree) and there is a deadlock detector for each

node of the hierarchy. For example, one might group sites by

*Actually, the DMs need only send changes in their graphs
-- i.e., newly created or erased edges -- to the deadlock
detector.

Distributed Database Concurrency Control Page -65-
Synchronization Techniques Section 4

region, then by countrX, then by continent, etc. Deadlocks that

are local to a single site would be detected at that site;

deadlocks involving two or more sites of the same region would

be detected by the regional deadlock detector, etc.

The hierarchical deadlock detection technique of (MMJ is

described using a transaction processing model that differs from

ours. The technique can be translated into our model in two

ways.

In one case the hierarchy is scheduler-based. The leaves of the

hierarchy are 2PL schedulers, while interior nodes represent

deadlock detectors; see figure 4.4. Every transaction T in the

system is identified with a node N of the hierarchy such that

all locks owned (or requested) by T are managed by schedulers

that are descendants of N; see figure 4.4. Thus, if all locks

requested by T are local to one site, T would be identified with

that site; if T'only requires locks at two sites of the same

region, then T would be identified with the region, etc.

Each 2PL scheduler constructs its local waits-for graph as for

the centralized technique. Local deadlocks are detected and

resolved immediately by each scheduler. To detect non-local

deadlocks each scheduler executes the following algorithm

periodically. Let Gi be the waits-for graph of scheduler Si.

Page -66- Distributed Database Concurrency Control

Section 4 Synchronization Techniques
--
DM-based Deadlock Detection Hierarchy Figure 4.4

Deadlockeaeadloc

SIf T accesses data at only one Dck -- e.g. Boston -- T's "deadlock detector

is the Boston DaE.

oIf T accesses data at Boston and Phil., its deadlock detector is the Northeast

D.D.

& If T accesses data at Boston and SF, its deadlock detector is the USA D.D.

e If T accesses data at Boston and Rome, its deadlock detector is the World-wide

D.D.

-

Distributed Database Concurrency Control Page -67-

Synchronization Techniques Section 4

1. Construct G+, the transitive closure of G. G+

contains the same nodes (i.e. transactions) as G but

more edges. In particular Gt contains an edge <T, T'>

iff Gi contains a pa from T to T'.

2. Eliminate from Gt all nodes (i.e., transactions) that
1

are identified with scheduler Si. Let G: denote the

resulting graph.

3. Construct (G:)r, the transitive reduction of G!. (G)r

is a minimal representation of Gi.

4. Transmit (G:)r to the parent of scheduler S i in the
hierarchy.

Each interior node of the hierarchy (i.e., each deadlock

detector) receives the reduced waits-for graphs from its

children. The deadlock detector constructs the union of these

graphs and checks for cycles. if a cycle is found, a deadlock

has been detected and is resolved in the standard manner.

Otherwise the deadlock detector executes the preceding algorithm

and transmits the result to its parent. This procedure

continues until the top of the hierarchy is reached.

A similar technique can be devised for a TM-based hierarchy.

Problems with Deadlock Detection

Although centralized and hierarchical deadlock detection differ

in detail, both involve the periodic transmission of local

h :,+. , +m .+ + II :, + ' :- ++- L ++ + .+ --+ . m + +" L .. .: ... T+ ;+l l ++' + + ' 4

Page -68- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

waits-for informatin to one or more deadlock detector sites.

The periodic nature of the deadlock detection process introduces

two problems:

1. Because deadlock detection is executed periodically, e

deadlock may exist for several minutes without being

detected. This can cause substantial response time

degradation. The solution is to execute the deadlock

detector more frequently. However, this increases the

cost of deadlock detection.

2. Suppose a transaction T which owns some locks and is

waiting for others is restarted for reasons other than

concurrency control (e.g., its site crashed). Until

T's restart is propogated to the deadlock detector, the

deadlock detector can find a cycle in the waits-for

graph that includes T. Such a cycle is called a

phantom deadlock. When the deadlock detector discovers

a phantom deadlock, it may unnecessarily restart a

transaction other than T. The effect of phantom

deadlocks is to cause transactions to be restarted

unnecessarily. (As in the case of preemptive deadlock

prevention, care must be taken not to erroneously

restart any transaction in the second phase of

two-phase commit).

Distributed Database Concurrency Control Page -69-
Synchronization Techniques Section 4

4.1.9 Deadlock Resolution for Voting 2PL

The voting technique of Section 4.1.4 introduces certain

deadlock resolution subtleties. The difficulty lies in defining

the waits-for relationship properly in the context of voting.

Suppose logical data item X has three copies -- X , x2, and x3

-- and suppose transaction Ti owns write-locks on x, and x2 but

Ti's lock request for x3 is blocked by Tj. Insofar as the

scheduler for x3 is concerned, Ti is waiting for Tj. However,

since Ti has a majority of the copies locked, the voting

protocol permits Ti to proceed without waiting for Tj. This

fact should be incorporated into the deadlock resolution scheme

to avoid unnecessary restarts.

4.1.10 Heuristics for Reducing Deadlock

This section describes three techniques which attempt to reduce

the cost and/or likelihood of deadlock.

Predeclaration of Locks

Page -70- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

In the 2PL implementation described so far, locks are requested

at the last possible moment. For example, read-locks are

requested by dm-read operations; if these locks were requested

any later, then the dm-read would violate the specification of

2PL (see Section 4.1.1). Similarly, write-locks are requested

by pre-commit operations; if these locks were requested any

later, then two-phase commit would not work correctly. (For

example, if write-locks were requested by dm-writes, a

transaction could deadlock during the second phase of two-phase

commit.)

,However, if a system is deadlock prone, it may be preferable to

request locks earlier. The objective is to force deadlocks to

occur earlier in the execution of transactions so that the cost

of restarting deadlocked transactions is reduced.

The extreme version of this heuristic calls for transactions to

Lredeclare their locks, meaning that all locks are obtained

before the transaction starts its main execution.

Predeclaration has two main disadvantages:

1. Before a transaction executes it may be difficult to

predict the data it will access. To pre-declare in

these cases it is necessary to lock all data the

transaction mii 9ht access.

2. Predeclaration causes locks to be held for a longer

period of time than is necessary.

Distributed Database Concurrency Control Page -71-
Synchronization Techniques Section 4

Both of these disadvantages tend to increase the probability

that other transactions will be delayed or restarted by the

predeclared locks.

Pre-orderin_ of Re sources

A common deadlock avoidance technique in operating systems is to

assign numbers to all resources and to require that processes

lock resources in numeric order. This technique is not

generally applicable to database systems since transactions may

request locks at various times during their execution. However,

it can be applied if locks are pre-declared. The technique can

also be used if write-locks are requested by pre-commits and all

pre-commits are issued at the same time (In the latter case,

the technique only prevents deadlocks involving ww conflicts;

deadlocks involving rw conflicts are still possible).

The principal disadvantage of this technique is that it forces

locks to be obtained seguentially. This tends to increase

transaction response time.

Re-orderinq of Wa1ting Queues

In the basic ZPL implementation lock requests for a given data

item are processed in FIFO order (see Section 4.1.2). In some

cases, though, it may be preferable to process requests in other

orders. For example, if deadlock prevention is in effect, one

umemo"

Page -72- Distributed D~tatase Concurrency Control

Section 4 Synchronization Techniques

should clearly process requests in priority order. It may also

be desirable to process requests for read-locks before

write-locks (or vice versa), etc.

These issues are often important in operating systems. Howe~er,

in centralized database systems the waiting queues for

individual data items are usually short, so these issues are

normally unimportant. The importance of these factors in

distributed database systems is unknown.

I4

Distributed Database Concurrency Control Page -73-
Synchronization Techniques Section 4

4.2 Timestamp Ordering (T/O)

4.2.1 Specification

Timestamp ordering (T/O) is a technique whereby the

serialization order is selected a priori and transaction

execution is forced to obey this order. This is in sharp

contrast to 2PL, where the serialization order is induced during

execution by the order in which locks are obtained. In

timestamp ordering, each transaction is assigned a unique

timestamp by its TM. (The timestamp generation technique of

Section 4.1.5 can be used here). The TM attaches the timestamp

to all dm-read and dm-write operations issued on behalf of the

transaction; DMs are required to process conflictinq__operations

in timestamp order.

The definition of conflicting operations depends on the type of

synchronization being performed and is analogous to conflicting

locks. For rw synchronization, two operations conflict iff (a)

both operate on the same data item x, and (b) one is a dm-read

and the other is a dm-write. For ww synchronization, two

operations conflict iff (a) both operate on the same data item,

and (b) both are dm-writes.

Page -74- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

It is easy to prove that T/O is a correct synchronization

technique, meaning that T/O attains an acyclic ->rwr (resp.

->ww) relation when used for rw (resp. ww) synchronization.

Since each DM processes conflicting operations in timestamp

order, each edge of the ->rwr (resp. ->ww) relation is in

timestamp order. Consequently, all paths in the relation are in

timestamp order and, since all transactions have un 2ue

timestamps, it follows that no cycles are possible. In

addition, the timestamp order is a valid serialization order.

4.2.2 Basic Implementation

An implementation of T/O amounts to building a T/O scheduler, a

software module that receives dm-read and dm-write operations

and outputs these operations in accordance with the T/O

specification [SM 1,2]. In practice, pre-commits must also be

processed through the T/O scheduler for two-phase commit to

operate properly. In Sections 4.2.2-4.2.8 we describe T/O

implementations without considering the impact of two-phase

commit. In Section 4.2.9 we factor two-phase commit into these

implementations.

As for 2PL, the basic T/O implementation distributes the

schedulers along with the database. Consider the T/O scheduler

at some particular DM. For each date item x stored at the DM,

'9 -~. ---.----------- - ____________ _________

Distributed Database Concurrency Control Page -75-
Synchronization Techniques Section 4

the scheduler keeps track of the largest timestamp of any

dm-read that has operated on x; this is called the R-timestamn

of x. The W-timestam of x is defined similarly.

The basic T/O scheduler operates as follows. Assume the

scheduler is performing rw synchronization. To process a

dm-read(x), the scheduler compares the timestamp of the dm-read

to the W-timestamp of x. If the timestamp. of the dm-read is

larger, the dm-read is output by the scheduler and the

R-timestamp of x is updated; the new R-timestamp of x equals the

maximum of (a) the old R-timestamp of x, or (b) the timestamp of

the am-read. If the timestamp of the dm-read is smaller than

the W-timestamp of x, then the dm-read is rejected and the

issuing transaction is aborted.

Similarly, to process a dm-write(x), the scheduler compares the

timestamp of the operation to the R-timestamp of x. If the

former timestamp is larger, the dm-write is output and the

W-timestamp of x is updated to the maximum of (a) the old

W-timestamp of x, or (b) the timestamp of the dm-write.

Otherwise, the dm-write is rejected and the transaction is

aborted.

For ww synchronization, the T/O scheduler operates as follows.

To process a dm-write (x), the scheduler compares the timestamp

of the dm-write to the W-timestamp of x. If the dm-write has a

larger timestamp, the dm-write is output and the W-timestamp of

Page -76- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

x is set equal to the timestamp of the dm-write. Otherwise, the

dm-write is rejected and the transaction is aborted.

When a transaction is aborted, it is assigned a larger timestamp

by its TM and is restarted. This restart policy can lead to a

cyclic restart situation (see Section 4.1.5). Cyclic restart

can Le avoided by assigning an especially large timestamp to the

transaction, thereby reducing the probability of a subsequent

restart. Other restart policies are discussed in the following

sections.

This implementation of T/O requires slightly less communication

than 2PL, because locks need not be released. (This remains

true even when two-phase commit is considered; see Section

4.2.9). However, this implementation requires a substantial

amount of storage for maintaining timestamps. Techniques for

reducing this storage requirement are discussed in Section

4.2.8.

4.2.3 The Thomas Write Rule

For ww synchronization the basic T/O scheduler can be optimized

using an observation of [Thomas 1-2]. Suppose the timestamp of

a dm-write(x) is smaller than the W-timestamp of x. Instead of

rejecting the dm-write (and restarting the issuing transaction)

Distributed Database Concurrency Control Page -77-
Synchronization Techniques Section 4

,we can simzly inore the dm-write. We call this the Thomas

Write Rule (TWR).

Intuitively, TWR only applies to a dm-write that is seeking to

place obsolete information into the database. The rule

guarantees that the effect of applying a set of dm-writes to x

is identical to what would have happened had the dm-writes been

applied in timestamp order. Thus, the effect is independent of

the order in which the dm-writes are applied. Note that TWR has

exactly the same effect as synchronizing dm-writes using the

basic T/O scheduler.

4.2.4 Multi-Version T/O

For rw synchronization the basic T/O scheduler can be improved

by using the multi-version data item concept of [Reed]. For

each data item x we maintain a set of R-timestamps, and a set of

<W-timestamp, value> pairs. Intuitively, the R-timestamps of x

record the timestamps of all dm-read operations that have ever

read x; the <W-timestamp, value> pairs record the timestamps of

all dm-writes that have ever written into x, along with the

values written. The <W-timestamp, value> pairs are called the

versions of x.

Page -78- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

Using multi-versions, one can achieve rw synchronization without

ever rejecting dm-reads. Consider a dm-read on x with timestamp

TS. To process this operation, we simply read the version of x

with largest timestamp less than TS; see figure 4.5a. However,

dm-writes can still be rejected. Consider a dm-write on x with

timestamp TS1 , and let TS 2* be the smallest W-timestamp of x

greater than TSi see figure 4.5b. If any R-timestamp of x lies

between TS1 and TS2 then the dm-write is rejected. If no

R-timestamp lies in that range, then the scheduler outputs the

dm-write; this causes a new version of x to be created with

timestamp TSl.

The correctness of this technique can be proved as follows.

Consider a dm-read(x) that is processed "out of order". I.e.,

suppose the dm-read(x) has timestamp TS1 yet it is processed

after some dm-write(x) with a larger timestamp TS2. The dm-read

ignores all versions of x whose timestamps are larger than TS1 ;

thus, the value read by the dm-read is identical to the value it

would have read had it been processed "in order". Now consider

a dm-write(x) that is processed "out of order". I.e., suppose

the dm-write has timestamp TSI, yet it is processed after some

dm-read with a larger timestamp TS2 . Since the dm-write was not

rejected, there must exist a version of x with timestamp TS1

such that TS1 < TS1 < TS2 . Again the effect is identical to the

effect of a timestamp ordered execution. Q.E.D.

4- --- _______________Who_

Distributed Database Concurrency Control Page -79-
Synchronization Techniques Section 4

--
Multi-version Reading and Writing Figure 4.5

a) Let us represent the versions of a data item x on a "time line"

values V1 V2 V3 ... Vn- V

i I i mon
W-timestamps 5 10 20 ... 92 100

To process a dm-read(x) with timestamp 95, find the biggest W-timestamp
less than 95; in this case 92. That is the version you read. So in this
case, the value read by the din-read is VU-1.

b) Let us represent the R-tiinestamps of x similarly

R-timestamps I I. I mo15

Vl V2 Y3 Vn... Vnvalues ____

W-timestamps 5 10 20 92 100

To process a dm-write(x) with timestamp 93, we create a now version of x
with that timestamp.

R-timestampsI
t /1 1*5

values V1 V2 V3 ... Vn1 V V
I I I It

W-timestamps 5 10 20 . 92 93 100

However, this new version "invalidates" the din-read of part (a), because
if the din-read had arrived after the din-write, it would have read value
V instead of Vn-l. Therefore, we must reject the din-write.

Page -80- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

Notice that the multi-version concept achieves ww

synchronization "automatically"; the effect of any sequence of

dm-writes is identical to the same dm-writes in timestamp order.

Insofar as ww synchronization is concerned, the multi-version

approach is therefore an embellished version of the Thomas Write

Rule.

It is usually not possible to keep all versions forever, so a

technique for forqettil (i.e., deleting) versions is needed.

This issue is addressed in Section 4.2.8.

4.2.5 Conservative T/O

Conservative timestamp orde rin is a technique for eliminating

the possibility of restarts during T/O scheduling. When a

scheduler receives an operation 0 that might cause a future

restart, the scheduler delays the processing of 0 until it is

certain that no future restarts are possible.

Imagine that each T/O scheduler has a collection of input

queues, one R-us1u!e and one W-queu2 per TM. Each R-queue

represents a FIFO (i.e., pipelined) channel for the transmission

of dm-reads from one TM to one scheduler, and each W-queue

*TS2 equals infinity if TS1 is the largest W-timestamp of
X.

Distributed Database Concurrency Control Page -81-
Synchronization Techniques Section 4

represents a pipelined channel for the transmission of dm-writes

from one TM to one scheduler. Each TM is required to place

operations into any given queue in timestamp order. For

example, if TM i sends dm-read(x) to some scheduler S. followed

by dm-read(y), the timestamp of dm-read(x) must be less than or

equal to the timestamp of dm-read(y). Since the queues are

pipelined, each scheduler receives dm-read operations from each

individual TM in timestamp order. Similarly, each scheduler

receives dm-write operations from each individual TM in

timestamp order.

This structure can be used to eliminate restarts during rw

synchronization as follows. Suppose scheduler Sj wants to

output a dm-read(x) with timestamp TS. If Sj outputs this

operation too early, it may cause subsequent dm-writes to be

rejected. Sj can avoid the rejection of dm-writes by delaying

the dm-read until it is certain that it has processed all

dm-writes with smaller timestamps. An algorithm that

accomplishes this goal for ri synchronization is sketched below.

1. Scan each W-queue. If the first dm-write on any

W-queue has timestamp less than TS, output the

dm-write.

2. Repeat step 1 until every W-queue is nonempty and the

first operation in each W-queue has timestamp greater

than TS.

-_________________

Page -82- Distributed Database Concurrency Control

Section 4 Synchronization Techniques

3. Output the dm-read.

This algorithm ensures that Sj will not output the dm-read until

it has processed all dm-writes with smaller timestamp.

Consequently, Sj is never forced to reject a dm-write.

However, this algorithm is not quite correct as stated. Let T i

be transaction issuing the dm-read with timestamp TS and let TM i

be the TM executing Ti. Step 2 of the algorithm requires

waiting until each W-queue (including TMi's) has a dm-write with

timestamp greater than TS. However, if T i intends to send a

dm-write to Sj (with timestamp TS), TMi cannot allow any

dm-writes with timestamps greater than TS to be sent to Sj.

And, even if Ti does not intend to send such a dm-write, TMi may

not know this fact at the time it sends Ti's dm-read to Sj.
Thus, Sj may be deadlocked waiting for a dm-write from TMi's

W-gueue. One solution to this problem is for TM i to send a

message through its W-queue to Sj indicating it has no more

dm-writes with timestamps smaller than TS to send to Sj, thereby
forcing S. to output Ti's dm-read. Such messages, called null

operations, will be described momentarily.

The algorithm does not, however, prevent the rejection of

dm-reads. One way to solve this problem is to use multi-version

T/O (see Section 4.2.4). Alternatively, the scheduler can delay

the processing of dm-writes until it is certain that it has

processed all dm-reads with smaller timestamps using an

Distributed Database Concurrency Control Page -83-
Synchronization Techniques Section 4

algorithm similar to the above. If the latter alternative is

adopted, the scheduling algorithm for rw synchronization may be

sketched as follows.

1. Initialize R-TS and W-TS to 0. ntuitively R-TS is the

smallest timestamp of any pending dm-read, provided there

is at least one dm-read on every R-queue. W-TS has a

similar meaning.

2. Output all possible dm-writes, as follows.

2.1 Scan each W-queue. If the first dm-write on any queue

has timestamp less than R-TS, then output that dm-write.

2.2 Repeat 2.1 until no further dm-writes can be output.

2.3 If any W-queue is empty, then let W-TS := 0. Otherwise

let W-TS := the minimum timestamp of any queued dm-write.

3. Output all possible dm-reads, as follows.

3.1 Scan each R-queue. If the first dm-read on ay queue has

timestamp less than W-TS, then output that dm-read.

3.2 Repeat 3.1 until no further dm-reads can be output.

3.3 If any R-queue is empty, then let R-TS .= 0. Otherwise

let R-TS := the minimum timestamp of any queued dm-read.

4. Go to step 2. When a dm-read (resp. dm-write) arrives at

the only empty R-queue (resp. W-queue), then change R-TS

(resp. W-TS) (which is currently 0) to be the minimum

timestamp of ay queued dm-read (resp. dm-write).

The algorithm for ww synchronization is simpler. In this case,

the scheduler need only wait until every W-queue is nonempty.

Page -84- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

I

The scheduler then outputs the dm-write with smallest timestamp.

If conservative T/O is used for both rw and ww synchronization,

the algorithm is equally simple. In this case, the scheduler

waits until every queue is nonempty and then outputs the

operation with smallest timestamp.

The above implementation of conservative T/O suffers three major

problems.

1. The implementation does not guarantee termination -- if

some TM never sends an operation to some scheduler, the

scheduler will "get stuck" due to the empty queue and

will never output any operations.

2. The implementation requires that all TMs communicate

regularly with all schedulers -- this is infeasible in

large networks.

3. The implementation is overly conservative -- e.g., the

combined rw and ww algorithm processes all opera tions

in timestamp order, not merely conflicting operation.

)Problems 1 and 2 are addressed below. Problem 3 is considered

in Section 4.2.6.

Guaranteein9 Termination -- Null operations

To guarantee termination, we require that TMs periodically send

timestamped nu11 2p r ions to each scheduler, in the absence of

any "real" traffic. A null-operation is a dm-read or dm-write

Distributed Database Concurrency Control Page -85-
Synchronization Techniques Section 4

that does not reference a data item. Its purpose is to convey

timestamp information to the scheduler. A null-dm-read (resp.

null-dm-write) operation with timestamp TS sent from TM. to1

scheduler Sj tells Sj that TMi will not send it any more dm-read

8resp.dm-write) operations with timestamps smaller than TS.

Thus, any scheduling decision that required Sj's receiving all

dm-reads (resp. dm-writes) from TM i timestamped less than TS can

be made after that null-dm-read (resp. null-dm-write) is

received.

An impatient scheduler can prompt a TM ,for a null-operation by

sending a reguest-nuli operation to it. The request-null should

specify the type of null-operation desired (read or write) and

the timestamp the scheduler is waiting for. For example,

suppose conservative T/O is being used for rw synchronization,

and suppose Sj wants to process a dm-read with timestamp TS. To

process this dm-read, Si must wait until each W-queue contains a

dm-write with timestamp greater than TS. If the W-queue from

TM i does not satisfy this property, Sj may send TM i a

request-null requesting a null-dm-write with timestamp greater

than TS.

Avoidin9 Unnecessary Communication

To avoid unnecessary communication between TMs and schedulers,

null-operations with very-large timestamps can be used. For

example, if TM i rarely needs to access the database protected by

AD-AO87 996 COMPUTER CORP OF AMERICA CAMBRIDGE MA P/6_9/2
FUNDAMENTAL ALGORITHMS FOR CONCURRENCY CONTROL IN DISTRIBUTED D--ETC(UI
MAY AG P A BERNSTEIN, N GOODMAN F30602-79-C-019

UNCLASSIFIED RADC-TR-BO-1 5A ML

23ffffffffffffE "hhmhhEEEEEEE
EEsohhhhhomhEE-nnnnnnunnuuin

mEENENh

1111 1128 ~J25
11111 32

11111 1.25 -II~ ~Q16

MR. fR)((WY Rf Y)OLUJ ION Ir',1 CHFAPI

Page -86- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

Si, TMi should send null-operations to Sj with timestamps far in

the future, e.g., every hour TMi could send Sj a null-operation

whose timestamp equals the current time plus one hour. Of

course, if TMi needs to send a "realo dm-read to Si at some time

during the hour, a mechanism is required to retract the large

timestamp and replace it by a more reasonable one.

In extreme cases, TMi can send Sj a null-operation with infinite

timestamp. This signifies that TM. does not intend to

communicate with S. until further notice.

4.2.6 Conservative T/O with Transaction Classes

Another technique for reducing communication is transaction

classes [BRGPJ. As in lock predeclaration (Section 4.1.9), we

assume that the readset and writeset of every transaction is

known in advance. This information is used to group

transactions into predefined classes. Class definitions are

used to support a less conservative scheduling policy.

A transaction class is defined by a readset and a writeset. A

transaction T is a member of class C iff T's readset is a subset

of C's readset, and T's writeset is a subset of C's writeset.

Classes need not be disjoint; i.e., T may be a member of several

classes. Figure 4.6 illustrates these definitions.

Distributed Database Concurrency Control Page -85-
Synchronization Techniques Section 4

that does not reference a data item. Its purpose is to convey

timestamp information to the scheduler. A null-dm-read (reap.

null-dm-write) operation with timestamp TS sent from TKi to

scheduler Sj tells Sj that T~i will not send it any more dm-read

8resp.dm-write) operations with timestamps smaller than TS.

Thus, any scheduling decision that required Sj's receiving all

dm-reads (resp. dm-writes) from TMi timestamped less than TS can

be made after that null-dm-read (resp. null-dm-write) is

received.

An impatient scheduler can prompt a TM ,for a null-operation by

sending a reguest-nu11 operation to it. The request-null should

specify the type of null-operation desired (read or write) and

the timestamp the scheduler is waiting for. For example,

suppose conservative T/O is being used for rw synchronization,

and suppose Sj wants to process a dm-read with timestamp TS. To

process this dm-read, Sj must wait until each W-queue contains a

dm-write with timestamp greater than TS. If the W-queue from

TMi does not satisfy this property, Sj may send T~i a

request-null requesting a null-dm-write with timestamp greater

than TS.

Avoidign Unnecessa y.Communication

To avoid unnecessary communication between TMs and schedulers,

null-operations with veryjla.! timestamps can be used. For

example, if TMi rarely needs to access the database protected by

Distributed Database Concurrency Control Page -87-
Synchronization Techniques Section 4

Transaction Classes Figure 4.6

-A class is defined by a readset and a vriteset. E.g.

C2: readset - vitset - Yl y2j

C2: readset - xi, 72 , .riteset - ylp 72, z2, z 3)

C3 : readset - 2, z , vriteset - X1 , z2, Z

'.3 33

•A transaction is a member of a class if its readset is a subset of the class
readset and its writeset is a subset of the class writeset. E.g.

Tl: readset - x'vriteset - 'l ;

T2 : readset - Y2 writeset - 22, z3

T3 : readset - 23 writeset - X)

* T1 is a member of C1 and C2

-T2 is a member of C2 and C3

* T3 is a member of C3

--- -- -- -- -- -- -- -- --- - - -- - - - -- - - -- - - -

Page -88- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

Transaction classes are defined statically meaning that class

definitions are not expected to change frequently during normal $
operation of the system. Changing a class definition is akin to

changing the database schema and requires mechanisms that are

beyond the scope of this report. We assume that class

definitions are stored in static tables which are readily

available at any site that requires this information.

Classes are associated with TMs. Every transaction that

executes at a TM must be a member of a class associated with the

TM. If a transaction is submitted to a TM at which this

property does not hold, the transaction is forwarded to another

TM at which an appropriate class exists.

For notational convenience, we assume that every class is

associated with exactly one TM, and conversely, every TM is

associated with exactly one class. We use Ci to denote the

class associated with TMi. This notation simplifies our

discussion, but does not constrain system operation in any way.

For example, suppose we wish to execute transactions that are

members of class C1 at two TMs, say TM1 and TM2 . To do so, we

merely define another class C2 with the same readset and

writeset as C1 and associate C1 with TM1 and C2 with TM2. On

the other hand, suppose we wish to execute transactions that are

members of two classes, say C1 and C2, at one TM. To do so, we

merely multi-program another TM at the same site as the first.

st.- - -

Distributed Database Concurrency Control Page -89-
Synchronization Techniques Section 4

Transaction classes are exploited by conservative T/O schedulers

as follows. Consider rw synchronization and suppose that

scheduler Sj wants to output a dm-read(x) with 'timestamp TS.

Instead of waiting for dm-writes with smaller timestamp from all

TMs, Sj need only wait for dm-writes from those TMs whose class

writeset contains x. Similarly, to process a dm-write(x) with

timestamp TS, Sj need only wait for dm-reads with smaller

timestamp from those TMs whose class readset contains x. Thus,

the level of concurrency in the system is increased. ww

synchronization proceeds in a similar fashion.

This technique also reduces communication requirements, since a

TM need only communicate with a scheduler if its class readset

or writeset contains data items protected by the scheduler.

4.2.7 Conservative T/O with Conflict Graph Analysis

Conflict_. aph an1ai.sis is a technique for further improving the

performance of conservative T/O with classes. A conflict__r aph

is an undirected graph that summarizes potential conflicts

between transactions in different classes. For each class Ci

the graph contains two nodes, denoted ri and wi. Intuitively,

these nodes represent the readset and writeset of Ci. The edges

of the graph are defined as follows (refer to figure 4.7).

Page -90- Distributed Database Concurrency Control
Section 4 Synchronization Techniques
--
Conflict Graph Figure 4.7

Define Cl, C2, C3 aB in figure 4.6

C1 readeet, - (XI) C2 readoet - (Z 7 2) C3 readeet - (Y2- 23)j

C1 vriteset - yl, Y2) C2 writeset t l Y. 2 2'Z3j C3 Witeeet -(XI, z2, z3)

Distributed Database Concurrency Control Page -91-
Synchronization Techniques Section 4

(i) For each class Ci, there is an edge between ri and wi;

this edge is called a vertical edge.

(ii) For each pair of classes Ci and Cj (with i~j) there is

a horizontal edge between wi and wj iff the writeset of Ci

intersects the writeset of C).

(iii) For each pair of classes Ci and Cj (with ibqj) there

is a diagonal edge between ri and wj iff the readset of Ci

intersects the writeset of C

Intuitively, a horizontal edge indicates a condition in which a

scheduler Sk may be forced to delay dm-write operations for

purposes of ww synchronization. Suppose classes Ci and Cj are

connected by a horizontal edge (i.e., there is an edge between

wi and wj). This means that the class writesets intersect. So,

if Sk receives a dm-write from Ci, it may be necessary for Sk to

delay the dm-write until Sk receives all dm-writes with smaller

timestamps from Cj.

Similarly, a diagonal edge indicates that Sk may be forced to

delay operations for rw synchronization. Suppose Ci and Cj are

connected by a diagonal edge -- in particular, assume that ri is

connected to wj. This means that the readset of Ci intersects

the writeset of C,. So, if Sk receives a dm-read from Ci, it

may be necessary to delay the dm-read until all dm-writes -from

Ci with smaller timestamp are received. Symmetrically, if Sk

Page -92- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

receives a dm-write from Cj, this operation will be delayed

until sufficient dm-reads are received from Ci.

Conflict graph analysis improves the situation by identifying

inter-class conflicts that cannot cause non-serializable

behavior. This corresponds to identifying horizontal and

diagonal edges that do not require synchronization. In

particular, it is proved in (BS 21 that schedulers need only

synchronize dm-writes from Ci and Ci if either

1. the horizontal edge between wi and wj is embedded in a

gygle of the conflict graph; or

2. portions of the intersection of Ci's writeset and Cj's

writeset are stored at two or more DMs.

In other words, if conditions (1) and (2) do not hold, a

scheduler Sk need not process dm-writes from Ci and Cj in

timestamp order.

Similarly, it is proved in [BS 2] that dm-reads from Ci and

dm-writes from Cj need only be processed in timestamp order if

either

1. the diagonal edge between ri and w. is embedded in a

cycle of the conflict graph; or

2. portions of the intersection of CiIs readset and Cj's

writeset are stored at two or more DMs.

Distributed Database Concurrency Control Page -93-
Synchronization Techniques Section 4

Since classes are defined statically, conflict graph analysis is

also performed statically. The output of this analysis is a

table indicating which horizontal and vertical edges require

synchronization and which do not. This information, like class

definitions, is distributed in advance to all schedulers that

require it.

Conservative T/O with conflict graph analysis has been

implemented in the SDD-l distributed database system [BSR].

In principle, conflict graph analysis can be applied to other

synchronization techniques to improve their performance as well.

Theoretical aspects of this integration are examined in [BSW],

but many details remain to be worked out.

4.2.8 Timestamp Management

A common criticism of T/O schedulers is that too much memory is

needed to store timestamps. This problem can be overcome by

"forgetting" old timestamps.

Timestamps are used in basic T/O to reject operations that

Oarrive late", e.g., to reject a dm-read(x) with timestamp TS1

tnat arrives after a dm-write (x) with timestamp TS2, where TS1

< TS2. In principle, TS1 and TS2 can differ by an arbitrary

amount. However, in practice it is unlikely that these

timestamps will differ by more than a few minutes.

--

Page -94- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

For example, suppose timestamps are generated using local

real-time clocks as described in Section 4.1.6. It is

reasonable to assume that these clocks can be kept approximately

synchronized, say to within 5 minutes of each other, using, say,

the technique of [Lamport 1]. Assume further that once a

transaction is assigned a timestamp, it completes execution

within 5 minutes and that the network delivers all operations

within 5 minutes. Given these assumptions, it is unlikely that

a scheduler will receive an operation whose timestamp is more

than 15 minutes behind real-time. Consequently there is little

point in storing older timestamps.

Because of this observation, timestamps can be stored in

relatively small tables which are periodically purged.

R-timestamps are stored in a table called the R-table. Entries

in the table are ordered pairs of the form <x, R-timestamp>;

for any data item x, there is at most one entry. In addition,

there is a variable, R-min, which tells the maximum value of any

timestamp that has been purged from the table.

When the scheduler needs to know the R-timestamp of x, it

searches the R-table for an <x, TS> entry. If such an entry is

found, then TS is the correct R-timestamp of x. Otherwise, the

R-timestamp of x is less-than-or-equal-to R-min. To err on the

side of safety, the scheduler assumes that the R-timestamp of x

eguals R-min. To update the R-timestamp of x, the scheduler

4-

Distributed Database Concurrency Control Page -95-
Synchronization Techniques Section 4

modifies the <x, TS> entry, if one exists. Otherwise, a new

entry is created and added to thetable.

When the R-table is full, the scheduler selects an appropriate

value for R-min and deletes all entries from the table with

smaller timestamp.

W-timestamps are managed by a similar discipline, and analogous

techniques can be devised ,for multi-version databases.

The timestamp situation for conservative T/O is even better,

because conservative T/O only requires timestamped oprations,

not timestamped data. If conservative T/O is used for rw

synchronization, the R-timestamps of data items are rendered

useless and may be discarded. If conservative T/O is used for

both rw and ww synchronization, then W-timestamps can be

eliminated as well.

4.2.9 Integrating Two-Phase Commit into T/O

It is necessary to integrate two-phase commit into the T/0

implementations described above in order to ensure atomic

commitment of updates (see Section 2). This is done by

timestamping pre-commit operations and modifying the T/0

implementations to accept or reject pre-commits instead of

dm-writes. If a scheduler rejects a pre-commit, the issuing

Page -96- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

transaction is aborted. However, if a scheduler accepts a

pre-commit, it must guarantee to accept the corresponding

dm-write no matter when that oe ration arrives. To make this

guarantee, the scheduler may be forced to delay conflicting

operations-that arrive before the dm-write.

In the rest of this section we explore the impact of two-phase

commit on each of the T/O implementations described previously.

Interatin9TwO:Phase Commit Into Basic T/O

Consider a pre-commit(x) with timestamp TS. Let P denote this

operation and let W denote the corresponding dm-write.

Assume that basic T/O is being used for rw synchronization. P

can be accepted by a scheduler iff TS is greater than the

R-timestamp of x; i.e., P is accepted iff the scheduler can

still output W. Once the scheduler accepts P, it must guarantee

that TS will remain greater than the R-timestamp of x until W is

received. To make this guarantee, the scheduler simply refuses

to output any dm-reads on x with timestamps greater than TS,

until W is received. If any such dm-reads arrive before W, the

scheduler places them on a waiting queue. The effect is similar

to setting a write-lock on x for the duration of two-phase

commit.

The algorithm for ww synchronization is similar. In this case,

P is accepted by the scheduler iff TS is greater than the

4-4

, - _ . . l ! . 1

Distributed Database Concurrency Control Page -97-
Synchronization Techniques Section 4

w-timestamp of x. Once the scheduler accepts P, it agrees not

to output any dm-writes on x with timestamps greater than TS,

until it receives W. If any such dm-writes arrive before W, the

scheduler places them on a waiting queue as above. The effect

differs from setting a write-lock on x in that pre-commits on x

with timestamps greater than TS can be accepted before W

arrives.

Integratin Two-Phase Commit Into Thomas Write Rule

The Thomas Write Rule applies only to ww synchronization and

eliminates the possibility of rejecting a dm-write for purposes

of ww synchronization. If the Thomas Write Rule is in effect,

there is no need to incorporate two-phase commit into the ww

synchronization algorithm. Pre-commits must still be sent to

all sites that are being updated, but the pre-commits need not

be processed by the ww scheduler.

Int. ~atinq Two-Phase Commit Into Multi-Version T/b

Like the Thomas Write Rule, the multi-version concept eliminates

the need to consider two-phase commit insofar as ww

synchronization is concerned. However, two-phase commit remains

as issue for rw synchronization.

Let P be a pre-commit(x) with timestamp TS1 and let W be the

corresponding dm-write. When P arrives at a scheduler, the

Page -98- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

scheduling rule of Section 4.2.4 is applied: let TS2 be the

smallest W-timestamp of x greater than TS,; if any R-timestamp

of x lies between TS1 and TS2, then P is rejected, otherwise P

is accepted. If the scheduler accepts P, it agrees not to

output any dm-reads on x with timestamps between TS1 and TS2

until W is received. As in the preceding algorithms, all such

dm-reads that arrive before W are placed on a waiting queue.

Inteqratiq Two-Phase Commit Into Conservative T/O

It is not essential that two-phase commit be tightly integrated

into conservative T/0, because conservative T/O never rejects

dm-writes. However, scheduling delay can be reduced by

transmitting pre-commits via W-queues instead of using these

queues for dm-writes.

For example, suppose conservative T/O is being used for rw

synchronization, and suppose scheduler Sj wants to output a

dm-read(x) with timestamp TS. Sj need only delay this dm-read

until each W-queue contains a pre-commit with timestamp greater

than TS; there is no need to wait for the corresponding

dm-writes. Of course, the dm-read may have to wait for some

dm-writes with smaller timestamp; i.e., if S. has accepted a

pre-commit(x) with timestamp TS' < TS, the dm-read cannot be

output until the dm-write(x) with timestamp TS' is received.

However, this delay is due to two-phase commitment requirements

and is independent of the conservative T/O scheduling rule.

i

- .r ..,

Distributed Database Concurrency Control Page -99-
Synchronization Techniques Section 4

If pre-commits are substituted for dm-writes in the W-queues,

then null-dm-writes must be replaced by null-pre-commits that

serve the same function as null operations carrying a timestamp.

4.2.10 Heuristics for Reducing Restarts

This section describes three heuristics which attempt to reduce

the cost or probability of restarts for non-conservative T/O

implementations.

Predeclaration of Readsets and Writesets

To reduce the cost of restarts, transactions are advised to

issue their dm-reads and pre-commits as early as possible. The

extreme version of this heuristic calls for transactions to

p.refSlare their readsets and writesets. This means that

dm-reads are issued for the entire readset and pre-commits are

issued for the entire writeset before a transaction begins its

main execution. If any operation is rejected, the transaction

starts over with a larger timestamp. Otherwise, the transaction

is guaranteed to execute with no danger of restart.

Delaying-p e ra t i o n s

To reduce the probability of restart, a scheduler can delay the

processing of operations to wait for "earlier" operations (i.e.,

-I, ~ ~ ~ ~ ~ ~ ~ ~ A 1--____________________

!Page -100- Distributed Database Concurrency Control
Section 4 Synchronization Techniques

ones with smaller timestamps) to arrive. This heuristic is

essentially a compromise between conservative and

non-conservative T/0, and trades response time for a reduction

in restart probability. The amount of delay can be tuned to

optimize this trade-off.

Reading Old Versions

The performance of multi-version T/O can be improved by

permitting queries (i.e., read-only transactions) to read old

versions of data items. Recall that in multi-version T/0,

dm-read operations are never rejected, but they may cause

subsequent pre-commits to be rejected. For example, once a

dm-read(x) with timestamp TS is processed, a subsequent

pre-commit(x) with timestamp TS', where TS' < TS, may be

rejected.

We can reduce the probability of a pre-commit being rejected by

letting queries issue dm-reads with small timestamps. Consider

a query Q. Instead of assigning Q a timestamp in the usual way

-- i.e., by reading the system clock -- we may assign Q an older

timestamp. This reduces the probability that Q will interfere

with an active update transaction, but of course, also causes Q

to read older data. If O's timestamp is too old, the data it

reads may be obsolete. Thus, this technique entails a

compromise between system performance and timeliness of data.

i 1

' " "j

Distributed Database Concurrency Control Page -101-
Synchronization Techniques Section 4

Little is known about this tradeoff in general. However,

because the real-world changes so slowly relative to computer

speeds, a good compromise should be achievable in many cases.

For example, if queries are assigned timestamps that are five

minutes old, we would expect few queries to interfere with

updates. And in many applications, five minute old data is

perfectly acceptable.

As a fringe benefit, this technique also improves the response

time for queries by reducing the probability that a query's

din-read operations will be blocked by pre-commits.

.

Page -102- Distributed Database Concurrency Control
Section 5 Integrated Coneurrency Control Methods

5. Integrated Concurrency Control Methods

An integrated concurrency control method consists of two

components -- an rw synchronization technique and a ww

synchronization technique -- plus an appropriate interface

between the components. In this section we list 48 concurrency

control methods that can be constructed using the techniques of

Section 4 as basic components. Our list of methods is by no

means exhaustive. Each method can be further refined by other

techniques described in Section 4, bringing the total number of

possible concurrency control methods numbers well into the

thousands.

Approximately 20 concurrency control methods have been described

in the literature. Virtually all of these methods use a

synchronization technique - either 2PL or T/O -- for both rw

and w synchronization. Indeed, most methods use the same

variation of a single technique for both kinds of

synchronization. However, such homogeneity is neither necessary

nor especially desirable.

For example, several references* propose methods in which basic

2PL is used for both rw and ww synchronization. Other

references recommend prirar _cop 2PL for both tasks. (,Later in

Distributed Database Concurrency Control Page -103-
Integrated Concurrency Control Methods Section 5

this section we shall identify which references recommend each

method.) No one has yet proposed a method in which these

synchronization techniques are combined. However the analysis

of Section 4.1.3 suggests that a method using basic 2PL for rw

synchronization and primary copy 2PL for ww synchronization

might be superior to either homogeneous techniques.

More outlandish combinations may offer even better performance.

For example, it is possible to combine basic 2PL (for rw

synchronization) with the Thomas Write Rule (for ww

synchronization). This method has the property that ww

conflicts never cause a transaction to be delayed or restarted;

i.e., this method permits multiple transactions to write into

the same data items concurrently. The details of this method

are non-trivial and are discussed in Section 5.3.

Combined methods such as these have not appeared in the

literature. A major benefit of this study is to bring such

methods to attention. In addition, this analysis emphasizes

that each method can be fine-tuned by many other options. For

example, every method that includes a 2PL component can be tuned

by the choice of deadlock resolution technique; T/O methods may

choose to use the "delay" heuristic of Section 4.2.10; etc.

These refinements may have a substantial impact on the overall

performance of the method.

Page -104- Distributed Database Concurrency Control
Section 5 Integrated Concurrency Control Methods

In this section we list the 48 concurrency control methods that

we deem to be principal methods. The choice of methods to

include here is based on structural and expository

considerations, and is arbitrary to some extent. The methods we

do not include are deemed to be refinements of the the principal

methods.

In Section 5.1 we list and describe 12 methods that use ZPL

techniques for both rw and ww synchronization. In Section 5.2

we describe 12 methods that use T/O techniques for both kinds of

synchronization. The concurrency control methods in these

sections are easy to describe given the material of Section 4:

the description of each method is little more than a description

of each component technique. Consequently, these sections are

repetitive within themselves and relative to Section 4. We

include this material to make our analysis of concurrency

control more concrete.

In Section 5.3 we list 24 concurrency control methods that

combine 2PL and T/O techniques. As we will illustrate in

Section 5.3, methods of this type can exhibit useful properties

that cannot be attained by pure 2PL or T/O methods.

4- - -|_ __ •

Distributed Database Concurrency Control Page -105-
Integrated Concurrency Control Methods Section 5

5.1 Pure 2PL Methods

The 2PL synchronization techniques of Section 4 can be

integrated to form twelve principa 2PLmethods, listed below.

rw technique ww technie

1 basic 2PL basic 2PL

2 basic 2PL primary copy 2PL

3 basic 2PL voting 2PL

4 basic 2PL centralized 2PL

5 primary copy 2PL basic 2PL

6 primary copy 2PL primary copy 2PL

7 primary copy 2PL voting 2PL

8 primary copy 2PL centralized 2PL

9 centralized 2PL basic 2PL

10 centralized 2PL primary copy 2PL

11 centralized 2PL voting 2PL

12 centralized 2PL centralized 2PL

Each method can be further refined by the choice of deadlock

resolution technique (see Section 4.1.6 - 4.1.9), and the

deadlock reduction heuristics of Section 4.1.10.

The interface between each 2PL rw technique and each 2PL ww

techniqtve is straightforward. The interface need only guarantee

Page -106- Distributed Database Concurrency Control
Section 5 Integrated Concurrency Control Methods

that "two-phased-ness" is preserved. That is, all locks needed

for the rw technique and all locks needed for the ww technique

must be obtained before any lock is released by either

technique.

Sections 5.1.1 - 5.1.3 describe the principal 2PL methods.

5.1.1 Methods Using Basic 2PL for rw Synchronization

Methods 1-4 use basic 2PL for rw synchronization. Consider a

logical data item X with copies xl,...,Xm. To read X, a

transaction sends a dm-read to any DM that stores a copy of X.

This dm-read implicitly requests a read-lock on the copy of X at

that DM. To write X, a transaction sends pre-commit operations

to every DM that stores a copy of X. These pre-commits

implicitly request write-locks on the corresponding copies of X.

For all four methods, these write-locks conflict with read-locks

on the same copy. These write-locks may also conflict with

other write-locks on the same copy, depending on the specific ww

synchronization technique used by the method.

Since locking conflict rules for write-locks will vary from copy

to copy, we distinguish three types. An rw write-lock only

conflicts with read-locks on the same data item. A ww

write-lock only conflicts with ww write-locks on the same data

.. - , - -

Distributed Database Concurrency Control Page -107-
Integrated Concurrency Control Methods Section 5

item. And, an rww write-lock conflicts with read-locks, ww

write-locks and rww write-locks. Thus, using basic 2?L for rw

synchronization, a pre-commit sets rw write-locks.

Method I -- Basic 2PL for ww synchronization. In this method, a

pre-commit issues rww write-lock (i.e., all write-locks are rww

write-locks). Thus, for ial,...,m a write-lock on xi conflicts

with either a read-lock or a write-lock on x.
1"

Method 1 is the "standard" implementation of 2PL in a

distributed environment. It has been recommended in one form or

another by many authors, including [Gray, RSL, Stonebraker].

Method 1 is also the concurrency control method used by System

R* (Selinger].

Method 2 -- Primary copy 2PL for ww synchronization. In this

method write-locks only conflict on the primary copy. Let x be

the primary copy of X. Then, an rww write-lock is used on x,

while for i=2,...,m an rw write-lock is used on x.

Method 3 -- Voting 2PL for ww synchronization. When voting is

used, a DM responds to a pre-commit(xi) by att2 npio to set an

rww write-lock on xi. However, if some other transaction

already owns an rww write-lock on xi, then the DM merely sets an

rw write-lock. A transaction can write into any copy of X as

soon as it obtains rww write-locks on a majority of copies.

Page -108- Distributed Database Concurrency Control
Section 5 Integrated Concurrency Control Methods

Method 4 -- Centralized 2PL for ww synchronization. This method

requires that, to write into X, a transaction must first

explicitly request a ww write-lock on X from a centralized 2PL

scheduler. The rw write-locks set by pre-commit operations

never conflict with each other.

In all four methods, read-locks are explicitly released by

lock-release operations while write-locks are implicitly

released by dm-writes. The lock-release operations may be

transmitted in parallel with the dm-writes. In Method 4,

additional lock-releases must be sent to the centralized

scheduler to release write-locks held there. These operations

must be transmitted after all dm-writes have been executed.

5.1.2 Methods Using Primary Copy 2PL for rw Synchronization

Methods 5-8 use primary copy 2PL for rw synchronization.

Consider a logical data item X with copies xl,...,Xm, and assume

that X1 is the primary copy. To read X, a transaction must

obtain a read-lock on x,. It may obtain this lock by issuing a

dm-read(xl). Alternatively, the transaction can send an

explicit lock-request to xl's DM; when the lock is granted the

transaction can read any copy of X.

*1

'~ ~ rw

S

Distributed Database Concurrency Control Page -109-
Integrated Concurrency Control Methods Section 5

To write into X, a transaction must send pre-commits to every DM

that stores a copy of X. These pre-commits are processed

differently depending on which copy of X is involved. A

pre-commit(XI) implicitly requests an rw write-lock.

Pre-commits on other copies of X may also request write-locks

depending on the ww technique.

Method 5 -- Basic 2PL for ww synchronization. Every pre-commit

requests a ww write-lock. For i=2,. ..,m, the pre-commit(xi)

requests a ww write-lock. Since the write-lock on x, must also

conflict with read-locks on xl, pre-commit(x1) requests an rww

write-lock.

Method 6 -- Primary copy 2PL for ww synchronization. The

pre-commit(x1) requests an rww a write-lock on x1 . Pre-commits

on other copies do not request any locks.

This method was originally proposed by [Stonebraker] and is the

concurrency control method used by Distributed INGRES [SNJ.

Method 7 -- Voting ZPL for ww synchronization. When a scheduler

receives a pre-commit(xi) for ill, it attempts to set a ww

write-lock on xi. When it receives a pre-commit(xl), it tries to

set an rww write-lock on xl; if it cannot, then the pre-commit

should still set an rw write-lock on X1 (if possible) before

waiting for the ww write-lock. A transaction can write into

every copy of X as soon as it obtains a ww (or rww) write-lock

on a majority of copies of X.

Page -110- Distributed Database Concurrency Control
Section 5 Integrated Concurrency Control Methods

Method 8 -- Centralized 2PL for ww synchronization. This method

requires that transactions obtain ww write-locks from a

centralized 2PL scheduler. Thus, a pre-commit(x1) requests an

rw write-lock on xl; for i-2,...,m pre-commit(xi) does not

request any lock at all.

Lock releases for Methods 5-8 are handled as per Section 5.1.1.

5.1.3 Methods Using Centralized 2PL for rw Synchronization

The remaining 2PL methods use centralized 2PL for rw

synchronization. Before reading any copy of logical data item

X, a transaction must obtain a read-lock on X ,from a centralized

2PL scheduler, and before writing into X, the transaction must

obtain an rw write-lock on X from the centralized scheduler.

The transaction must also send pre-commits to every DM that

stores a copy of X. Some of these pre-commits implicitly

request ww write-locks on copies of X, depending on the specific

method.

Method 9 -- Basic 2PL for ww synchronization. Every pre-commit

requests a ww write-lock.

Method 10 -- Primary copy 2PL for ww synchronization. Let x be

the primary copy of X. A pre-commit(xl) requests a ww

write-lock. Pre-commits on other copies do not request any

write-locks.

4- -- __ _ _ -- -----------.

Distributed Database Concurrency Control Page -111-
Integrated Concurrency Control Methods Section 5

Method 11 -- Voting 2PL for ww synchronization. Every

pre-commit attempts to set a ww write-lock. A transaction can

write into every copy of X iff it obtains ww write-locks on a

majority of copies of X.

Method 12 -- Centralized 2PL for ww synchronization. In this

method, all locks are obtained at the centralized 2PL scheduler.

Before writing into a copy of X, an rww .wriie-lock on X is

obtained. Pre-commits set no locks at all.

Method 12 is the "standard" implementation of centralized 2PL

for a distributed database. It is identical to the pimary site

method of [AD].

Lock releases for Method 9-12 are handled as per Section 5.1.1.

-Pure T/O Methods

The T/) synchronization techniques of Section 4 can also be

int-ceorated to form twelve principal T/O methods. These are

rw technique ww techniue

I basic T/O basic T/O

2 basic T/O Thomas Write Rule (TWR)

3 basic T/O multi-version T/O

4 basic T/O conservative T/O

5 multi-version T/O basic T/O

Page -112- Distributed Database Concurrency Control
Section 5 Integrated Concurrency Control Methods

6 multi-version T/O TWR

7 multi-version T/O multi-version T/O

8 multi-version T/O conservative T/O

9 conservative T/O basic T/O

10 conservative T/O TWR

11 conservative T/O multi-version T/O

12 conservative T/O conservative T/O

(The fact that the number of T/O methods equals the number of

2PL methods is a coincidence).

Each T/O method that incorporates a non-conservative component

can be further refined by including (1) techniques for

forgettinitimestamps (see Section 4.2.8) and (2) heuristics for

reducing restarts (see Section 4.2.10). Each method that

incorporates a conservative component may also incorporate

classes (see Section 4.2.6) and conflict graph analysis (see

Section 4.2.7).

The interface between the rw and ww synchronization techniques

is even simpler for T/O methods than for 2PL. The only

requirement is that both techniques use the same timestamp,

i.e., if transaction T has timestamp TS, then TS is used for

both rw and ww synchronization.

Sections 5.2.1 - 5.2.3 describe the twelve principal T/O

Methods.

Distributed Database Concurrency Control Page -113-
Integrated Concurrency Control Methods Section 5

5.2.1 Methods Using Basic T/O for rw Synchronization

Methods 1-4 use basic T/O for rw synchronization. Each stored

data item in the system, e.g. xi, has an R-timestamp and a

W-timestamp. (Recall from Section 4.2.2. that the R-timestamp

(resp. W-timestamp) of xi is the largest timestamp of dm-read

(resp. dm-write) that has read from (resp. written into) xi).

Let T be a transaction with timestamp TS. To read xi, T issues

a dm-read on xi with timestamp TS; this dm-read is acce iff

TS is greater-than the W-timestamp of xi. To write into xi, T

issues a pre-commit(x1) with timestamp TS; this pre-commit is

accepted iff (a) TS is greater-than the R-timestamp of xi, and

(b) a condition determined by the ww synchronization technique

is also satisfied.

Method 1 -- Basic T/O for ww synchronization. The pre-commit is

accepted iff TS is greater-than the R-timestamp and W-timestamp

of Xi .

Method 2 -- TWR for ww synchronization. The pre-commit is

accepted iff TS is greater-than the largest R-timestamp of xi

However, if the pre-commit is accepted and TS is less-than the

W-timestamp of xi, then the corresponding dm-write is o

i.e., it has no effect on the database.

- - -- -__

Page -114- Distributed Database Concurrency Control
Section 5 Integrated Concurrency Control Methods

This method represents an optimization of Method 1 that is

apparently preferable in most situations.

Method 3 -- Multi-version T/O for ww synchronization. The

pre-commit is accepted iff TS is greater-than the R-timestamp of
Xi; the W-timestamp is irrelevant. If the pre-commit is

accepted, the corresponding dm-write creates a new version of

xi

At first glance, this method appears to be a space-inefficient

version of Method 2. However this method can be adapted to

yield better performance by letting queries read old versions of

data items; see Section 4.2.10.

Method 4 -- Conservative T/O for ww synchronization. In this

method, pre-commits are processed by each scheduler in timestamp

order. I.e., a scheduler S will not process a pre-commit with

timestamp TS until it has processed all pre-commits with smaller

timestamp, and no pre-commits with larger timestamp. When S

pre-commit iff TS is greater-than the R-timestamp of xi.

At first glance this method appears to be a time-inefficient

version of Method 2. However, unlike Method 2, this method

applies updates to each DM in timestamp order. Consequently,

the database at each DM is always consistent in between updates,

a property which may be useful for reliability reasons.

Distributed Database Concurrency Control Page -115-
Integrated Concurrency Control Methods Section 5

5.2.2 Methods Using Multi-version T/O for rw Synchronization

Methods 5-8-use multi-version T/O for rw synchronization. The

reader is referred to Section 4.2.4 for a description of this

technique. Let T be a transaction with timestamp TS. To read

Xi , T issues a dm-read on xi with timestamp TS; this dm-read is

always accepted. To write into xi, T issues a pre-commit(x i)

with timestamp TS; this pre-commit is accepted iff (a) there is

no R-timestamp for xi that lies between TS and the smallest

W-timestamp of xi larger than TS, and (b) a condition determined

by the ww synchronization technique is also satisfied. It is

important that once a pre-comnmit(x) with timestamp TS is

accepted, no dm-read(xi) with larger timestamp be processed

until the dm-write(xi) corresponding to the pre-comit is

installed (see Section 4.2.9).

Method 5 -- Basic T/O for ww synchronization. For basic T/0,

condition (b) requires that TS be greater-than the largest

W-timestamp of xi. Thus, for Method 5, conditions (a) and (b)

may be simplified as follows. The pre-commit is accepted iff TS

is greater-than the largest R-timestamp of xi and the largest

W-timestamp of xi. If the pre-commit is accepted, the

corresponding dm-write creates a new version of x1 .

!Page -116- Distributed Database Concurrency Control
Section 5 Integrated Concurrency Control Methods

Method 6 -- TWR -for ww synchronization. This method is an

incorrect method. TWR requires that a dm-write(xi) with

timestamp TS be iqnored if TS is less than the maximum

W-timestamp of xi. This may cause subsequent dm-reads to Lead

inconsistent data; see figure 5.1. (Method 6 is the only

incorrect method we will encounter).

Method 7 -- Multi-version T/O for ww synchronization. This

method is the correct way to achieve the goals of TWR in

conjunction with multi-version rw synchronization. In this

method, the pre-commit is accepted iff condition (a) holds. If

the pre-commit is accepted, the corresponding dm-write creates a

new version of x1 .

Method 8 -- Conservative T/O for ww synchronization. In this

method, a scheduler S will not process a pre-commit with

timestamp TS until it has processed all pre-commits with smaller

timestamps, and none with larger timestamps. This permits us to

simplify the condition for acceptance of a pre-commit as

follows. A pre-commit(xi) with timestamp TS is accepted iff TS

is greater than the largest R-timestamp of xi.

Systematic Forqettin ofOld Version

In Methods 5 and 8, the versions of each data item xi are

created in timestamp order. That is, once a version of xi has

been created with timestamp TS, no subsequent transaction can

...... i

Distributed Database Concurrency Control Page -117-
Integrated Concurrency Control Methods Section 5

Inconsistant Retrievals in Method 6 Figure 5.1

e Consider data items x and y with the folloving versions

values 0 100
x aW-tinestamps 0 J0

values 0
y

W-timestaups

* Nov suppose T has timestamp 50 and writes x:50, Y:=50. Under Method 6, the
update to x is ignored, and the result is

values 0 100
x i ONW-timestamps 0It

values 0 50

y
W-timestamps 05

* Finally, suppose T' has timestamp 75 and reads x and y. The values it will
read are x-0, y-50 which is incorrect. T' should read x-50, y- 50

Page -118- Distributed Database Concurrency Control
Section 5 Integrated Concurrency Control Methods

create a version with a smaller timestamp. Whenever this

property holds, it is possible to forget (i.e., delete) old

versions in such a way that we never delete a version that is

needed by a later transaction.

Let W-max(xi) be the maximum W-timestamp of xi, and let W-min be

the minimum value of W-max(xi) over all data items x, in the

database. Observe that no pre-commit with timestamp smaller

than W-min can be accepted in the future, since W-min is smaller

than W-max(xi) for all xi . Consequently, if any update

transaction is assignad a timestamp smaller than W-min at any

point in the future, the transaction is guaranteed to be

restarted, So, insofar as update transactions are concerned, we

can safely forget all versions of every data item timestamped

less than W-min.

Once old versions are forgotten, any dm-read with timestamp less

than W-min must be rejected, since the version it needs no

longer exists. It is therefore wise to alert all THs of the

current value of W-min, so they do not issue dm-reads with

smaller timestamp. Also, after a new W-min is selected, older

versions should not be forgotten immediately, so that active

queries timestamped less than the new W-min have an opportunity

to finish reading those older versions.

Notice also that Methods 5 and 8 only require that the largst

R-timestamp of each data item be stored. Smaller R-timestamps

may be forgotten at once.

Distributed Database Concurrency Control Page -119-
Integrated Concurrency Control Methods Section 5

S§ystematic Readinq of Old Versions

Methods 5 and 8 also support a systematic technique for

assigning old timestamps to queries (see Section 4.2.10) in such

a way that

a. no dm-read issued by a query will ever invalidate a

dm-write; and

b. the timestamp assigned to the query is the largest one

satisfying (a).

This technique is similar to the technique for systematic

forgetting of old versions.

Let 0 be a query. The technique we describe requires that Q's

readset be predeclared. Before Q begins its main execution 0's

readset is examined; for each xi in the readset, W-max(x i) is

ascertained. In addition, we calculate W-min - min{W-max(xi) l

xi is in Q's readset}. The timestamp assigned to Q is W-min -

1.

This technique satisfies properties (a) and (b) by the following

argument. Since Methods 5 and 8 create versions in timestamp

order, these methods will never accept an update that conflicts

with Q but has timestamp less than W-min. Thus, no dm-read

issued by Q can ever cause a dm-write to be rejected, as

required by property (a). Now, consider any data item x in O's

readset for which W-max(x)- W-min. Methods 5 and 8 could accept

Page -120- Distributed Database Concurrency Control
Section 5 Integrated Concurrency Control Methods

an update transaction T with timestamp W-min+l that writes into

x. If the timestamp of Q were any larger than W-min - 1, Q's

dm-read on x would invalidate T. Thus W-min - 1 is the largest

timestamp that could be assigned to Q without violating property

(a). Q.E.D.

Note that this technique requires more communication than the

"non-systematic" algorithm for reading old versions described in

Section 4.2.10. It is unclear whether the benefits of the

systematic algorithm are worth this extra cost.

5.2.3 Methods Using Conservative T/O for rw Synchronization

The remaining T/O methods use conservative T/O for rw

synchronization. In these methods, a scheduler S will not

process a dm-read(xi) with timestamp TS until it has processed

all pre-commits with smaller timestamps and no pre-commits with

larger timestamps. Symmetrically, S will not process a

pre-commit(xi) with timestamp TS until it has processed all

dm-reads with smaller timestamps and none with larger

timestamps. When S processes a pre-commit(x i) with timestamp

TS, the action taken depends on the specific ww technique.

Method 9 -- Basic T/O for ww synchronization. The pre-commit is

accepted iff TS is greater than the W-timestamp of xi.

isi

Distributed Database Concurrency Control Page -121-
Integrated Concurrency Control Methods Section 5

Method 10 -- TWR for ww synchronization. The pre-commit is

always accepted. However, if TS is less than the W-timestamp of

Xi , the corresponding dm-write has no effect on the database.

Method 10 is essentially the concurrency control of SDD-l [BSR].

In SDD-l, however, the method is refined in several ways to

reduce delay. First, SDD-1 uses classes and conflict raph

analy.sis and requires pjeeclaration of readsets. In addition,

SDD-l only enforces the conservative scheduling rule on

dm-reads. That is, SDD-l forces dm-reads to wait for

pre-commits, but does not insist that pre-commits wait for all

dm-reads with smaller timestamps. Consequently, it is possible

for dm-reads to be rejected in SDD-l. The SDD-l designers were

willing to accept this possibility for two reasons:

1. Since readsets are predeclared, all dm-reads are issued

before the transaction begins its main execution; so

the cost of rejecting a dm-read is modest.

2. The probability that a dm-read will be rejected can be

reduced by assigning large timestamps to transactions.

Method 11 -- Multi-version T/O for ww synchronization. The

pre-commit is always accepted and the corresponding dm-write

always creates a new version of xi. When multi-versions are

used, the conservative rw technique can be optimized as follows:

a dm-read can never be rejected, and so there is no reason to

..........

Page -122- Distributed Database Concurrency Control
Section 5 Integrated Concurrency Control Methods

force pre-commits to wait for dm-reads. (dm-reads must still

wait for pre-commits to ensure that pre-commits are never

rejected; and each dm-read must read the appropriate version

relative to its timestamp.)

Method 12 -- Conservative T/O for ww synchronization. In this

method, scheduler S will not process a pre-commit with timestamp

TS until it has processed all pre-commits with smaller

timestamps and none with larger timestamps. Combined with

conservative rw synchronization, the effect is to process all

operations in timestamps order.

Method 12 is a popular timestamp-based concurrency control

method. It has been recommended by [KNTH, SM].

5.3 Mixed 2PL and T/O Methods

This section considers concurrency control methods that combine

2PL and T/O techniques. The major difficulty in constructing

such methods lies in developing the interface between the ZPL

and the T/O technique. Each technique guarantees an acyclic

->rwr (resp. ->ww) relation when used for rw (resp. ww)

synchronization. The interface between a 2PL and a T/O

technique must guarantee that the combined -> relation -- i.e.,

->rwr U ->ww -- remains acyclic. In other words, the interface

must ensure that the serialization order induced by the rw

Distributed Database Concurrency Control Page -123-
Integrated Concurrency Control Methods Section 5

technique is consistent with the serialization order induced by

the ww technique.

In Section 5.3.1 we describe an interface that makes this

guarantee. Given such an interface, any 2PL technique can be

integrated with any T/O technique. Sections 5.3.2 and 5.3.3

describe such methods.

5.3.1 The Interface

The serialization order induced by any 2PL technique is

determined by the locked-points of the transactions that have

been synchronized (see Section 4.1.1). The serialization order

induced by any T/O technique is determined by the timestamps of

the synchronized transactions.

One way to interface 2PL and T/O is to use locked-poits to

induce timestamps. Associated with each data item is a

timestamp called an L-timestam to distinguish it from the R-

and W-timestamps needed for T/O synchronization. When a

transaction sets a lock on data item x, it simultaneously notes

the L-timestamp of x. When the transaction reaches its

locked-point it determines the maximum L-timestamp that it noted

while setting locks. The timestamp assigned to the transaction

is any number greater than that maximum*. When a transaction

releases a

a. - . .

Page -124- Distributed Database Concurrency Control

Section 5 Integrated Concurrency Control Methods

lock on x it updates the L-timestamp of x to the maximum of (a)

the L-timestamp's current value, or (b) the timestamp of the

transaction.

We can prove that timestamps generated in this way are

consistent with a serialization order of the transactions that

were synchronized by 2PL. Let T1 and Tn be a pair of

transactions such that T1 must precede Tn~in any serialization.

This means that there exists a set of transactions {T1,..., Tn}

such that (a) the locked-point of T1 precedes the locked-point

of T2 which precedes the locked-point of T3 ..., and (b) for each

pair of transactions, Ti and Ti+1 for i=l,...,n-l, there exists

a data item xi such that Ti released its lock on xi before Ti+ 1

obtained its lock on xi. Therefore, the L-timestamp that Ti+i

noted for xi is greater-than-or-equal-to the timestamp of Ti and

so the timestamp of Ti+1 is strictly greater-than the timestamp

of Ti. It follows that the timestamp of Tn is greater-than the

timestamp of TI. Q.E.D.

*Most T/O techniques require that transactions be assigned
ppigu2 timestamps. Standard strategies can be adopted to
meet this requirement. For example, each TM can generate
timestamps in the "standard" way described in Section
4.1.1 and the standard timestamp can be appended to low
order bits of the timestamp generated here.

Distributed Database Concurrency Control Page -125-
Integrated Concurrency Control Methods Section 5

5.3.2 Mixed Methods Using 2PL for rw Synchronization

There are twelve principal methods in which 2PL is used for rw

synchronization and T/O is used for ww synchronization. These

are

rw technique ww technigue

1 basic 2PL basic T/O

2 basic 2PL TWR

3 basic 2PL multi-version T/O

4 basic 2PL conservative T/O

5 primary copy 2PL basic T/O

6 primary copy 2PL TWR

7 primary copy 2PL multi-version T/O

8 primary copy 2PL conservative T/O

9 centralized 2PL basic T/O

10 centralized 2PL TWR

11 centralized 2PL multi-version T/O

12 centralized 2PL conservative T/O

Method 2 best exemplifies this class of methods, and it is the

only one we shall describe in detail.

Method 2 requires that every stored data item have an

L-timestamp and a W-timestamp. (It is possible to use a single

AM0- J

Page -126- Distributed Database Concurrency Control
Section 5 Integrated Concurrency Control Methods

timestamp for both roles, but we will not consider this

optimization here.)

Let X be a logical data item with copies xl,..., Xm. To read X,

a transaction T issues a dm-read on any copy of X, say xi. This

dm-read implicitly requests a read-lock on xi, and when the

read-lock is granted, the L-timestamp of xi is returned to T.

To write into X, T issues pre-commits on every copy of X. These

pre-commits implicitly request rw write-locks on the

corresponding copies of xi, and as each write-lock is granted,

the corresponding L-timestamp is returned to T. When T has

obtained all of its locks, a timestamp for T is calculated as

per Section 5.3.1. T attaches this timestamp to its dm-write

operations which are then transmitted.

Dm-write operations are processed by DMs in accordance with TWR.

Consider a dm-write on x. with timestamp TS. If TS is

greater-than the W-timestamp of xj, the dm-write is processed as

usual -- i.e., the value of xj is updated to the value contained

in the dm-write, and the W-timestamp of x is updated to TS.

If, however, TS is less-than the W-timestamp of xj, the dm-write

is inored.

The interesting property of this method is that write-locks

never conflict with write-locks. The write-locks obtained by

pre-commits are only used for rw synchronization, hence only

conflict with read-locks. This method permits transactions to

--....

Distributed Database Concurrency Control Page -127-
Integrated Concurrency Control Methods Section 5

execute concurrently to completion even if their writesets

intersect. Such concurrency is never possible in a pure 2PL

method.

Methods 1 and 3-12 are implemented similarly. The integration

of two-phase commit into each method requires some care,

however.

5.3.3 Mixed Methods Using T/O for rw Synchronization

It is also possible to construct twelve principal methods in

which T/O is used for rw synchronization and 2PL is used for ww

synchronization.

rw technique ww techniq

13 basic T/O basic 2PL

14 basic T/O primary copy 2PL

15 basic T/O voting 2PL

16 basic T/O centralized 2PL

17 multi-version T/O basic 2PL

18 multi-version T/O primary copy 2PL

19 multi-version T/O voting 2PL

20 multi-version T/O centralized 2PL

21 conservative T/O basic 2PL

22 conservative T/O primary copy 2PL

.-

Page -128- Distributed Database Concurrency Control

Section 5 Integrated Concurrency Control Methods

23 conservative T/O voting 2PL

24 conservative T/O centralized 2PL

These methods all require re2-declaration of write-locks. Since

T/O is used for rw synchronization, transactions must be

assigned timestamps before they issue dm-reads. However, the

timestamp generation technique of Section 5.3.1 requires that a

transaction be at its locked-point before the transaction is

assigned its timestamp. It follows that every transaction must

be at its locked-point before it issues any dm-reads, or in

other words, every transaction must obtain all of its

write-locks before it begins its main execution.

To illustrate how these methods are implemented, we shall

describe Method 17. Method 17 requires that each stored data

item have a set of R-timestamps, a set of <W-timestamps, value>

pairs -- i.e., versions -- and an L-timestamp. Importantly, the

L-timestamp of any data item may be taken to be the maximum of

its maximum R-timestamp and its maximum W-timestamp.

Let T be a transaction. Before beginning its main execution, T

issues pre-commits on every copy of every data item in its

writeset. These pre-commits serve three functions: they play a

role in ww synchronization, rw synchronization, and the

interface between these techniques.

..... .

Distributed Database Concurrency Control Page -129-
Integrated Concurrency Control Methods Section 5

Consider a pre-commit(xi). The "ww role" of this pre-commit is

to request a ww write-lock on xi . When the ww write-lock is

granted, the L-timestamp of xi is returned to T; this is the

"interface role" of the pre-commit. Let TS be the L-timestamp

returned at this point. The rw role of the pre-commit is to

inform the rw synchronization mechanism that a dm-write(xi) with

timestamp greater-than TS is "pending". The rw technique uses

this information to guarantee that the dm-write can be accepted

when it ultimately arrives; to make this guarantee the rw

technique will not output any dm-read(xi) with timestamp

greater-than TS until the dm-write arrives (see Section 4.2.9).

When T has obtained all of its write-locks, a timestamp for T is

calculated as per Section 5.3.1. At this point T begins its

main execution.

T attaches its timestamp to all dm-read and dm-write operations

that it issues. These operations are processed using the

multi-version technique described in Section 4.2.4. A

dm-read(xi) with timestamp TS reads the version of xi with

largest W-timestamp less than TS; this dm-read also adds TS to

the set of R-timestamps for xi. A dm-write(x i) with timestamp

TS creates a new version of xi with W-timestamp equal to TS.

One interesting property of this method is that restarts are

only needed to resolve ww conflicts. In particular, restarts

are only needed to prevent or break deadlocks caused by ww

Page -130- Distributed Database Concurrency Control
Section 5 Integrated Concurrency Control Methods

synchronization. rw conflicts never cause restarts. This
property cannot be attained by a pure 2PL method. This property

can be attained by pure T/O methods, but only if conservative

T/O is used for rw synchronization; in many cases conservative

T/O introduces excessive delay or is otherwise infeasible.

The behavior of this method for queries is also interesting.

Queries, of course, set no write-locks, and so the timestamp

generation rule does not apply to queries. This means that the
system is free to assin an tmestampit wants to a 9uery. It

may assign a small timestamp, in which case the query will read

old data but is unlikely to be delayed by "pending" dm-writes.

Or it may assign a large timestamp, in which case the query will

read current data but is more likely to be delayed. No matter

what timestamp is selected, however, aquerycan never cause an

update tobe _E2ected. This property cannot be easily attained

by any pure 2PL or T/O method.

We also observe that this method creates versions in timestamp

order, and so systematic forgetting of old versions is possible,

(see Section 5.2.2.) In addition, the method only requires that

the maximum R-timestamp of data items be stored; smaller

R-timestamps may be instantly "forgotten".

Distributed Database Concurrency Control Page -131-
Performance of Concurrency Control Methods Section 6

6. Performance of Concurrency Control Methods

Concurrency control methods are complex algorithms and a

quantitative analysis of concurrency control performance is

beyond the state-of-the-art. In this section we discuss

concurrency control performance in qualitative, comparative

terms. We shall compare the performance of principal methods

along several dimensions, and we shall discuss the performance

impact of refinements to principal methods. Our goal is to

provide an intuitive understanding of the factors that influence

concurrency control performance.

An overview of the section appears in Section 6.1; the body of

our performance analysis follows in Sections 6.2-6.7. Section

6.8 reviews past works on this topic.

We emphasize at the outset that our performance analysis is

based on several assumptions and simplifications. Given the

present state-of-the-art, these assumptions are necessary in

order to say anything at all about concurrency control

performance. The reader is cautioned to keep this in mind when

interpreting the results in this section.

_______ -

Page -132- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

6.1 Overview

The performance of a concurrency control method is judged in

terms of system throughput and user response time. Four cost

factors govern the throughput and response time of a concurrency

control method: (1) inter-site communication overhead; (2)

local proces sins overhead; (3) number and cost of transaction

restarts induced by the method; and (4) the magnitude of

transaction blocking caused by the method.

The impact of each cost factor on system throughput and response

time varies from system to system and application to

application. Consider, for example, a DDBMS whose sites are

mainframe computers and whose network is a narrow bandwidth

packet-switched network. In this system, communication overhead

is expected to have a greater impact on performance than local

processing overhead. However, in a DDBMS consisting of

micro-computers connected by a wide bandwidth broadcast network,

the opposite relationship is likely to hold.

The impact of cost factors on throughput and response time is

not understood in detail, however, and we will not focus our

analysis on this issue.

Distributed Database Concurrency Control Page -133-
Performance of Concurrency Control Methods Section 6

Instead, we will concentrate on the performance of principal

methods (and important refinements) relative to individual cost

factors. For each cost factor we will determine which method

has best performance when we consider that cost factor in

isolation, which method has worst performance, etc. We

summarize the results for each cost factor in diagrams that

indicate the relative performance of principal methods under

that cost factor. This analysis is carried out in Sections

6.2-6.5.

We will see that no concurrency control method is optimum under

all four cost factors; this means that no method is best under

all conditions. The relative performance of methods will vary

from system to system and application to application, depending

on the relative importance of each cost factor for the system

and application. Little is known about the magnitude of this

variation, nor is it known whether any method offers good

performance over a large range of systems and applications.

However, it is possible to identify 11 methods as dominant

methods. For any system and application, one of these dominant

methods is expected to be optimum. (That is, if the assumptions

used in the analysis are valid.) To select a concurrency

control method for a given environment, therefore, the system

designer need only consider the 11 dominant methods. Dominant

methods are discussed in Section 6.6.

Lii~izzzzz .~- _______________________________7

Page -134- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

The choice among dominant methods requires that the strengths

and weaknesses of each method be matched against system and

application demands. This remains a largely unsolved

engineering problem. Additional research is needed to quantify

the performance of dominant methods, to quantify the impact of

each cost factor on throughput and response time, and to

characterize the important "system and application demands". In

Section 6.7, however, we sketch a plausible design scenario for

two stereotyped application environments, called optimistic and

pessimistic applications. We show that only a handful of

methods (no more than 3 or 4) deserve serious attention in these

environments. Thus, for these cases at least, the design of a

concurrency control appears to be a tractable engineering

problem.

6.2 Communication Overhead

There are many components to communication cost in a distributed

processing environment. One important component is the total

communication volume -- i.e., the total number of bits sent

between sites. Another important component is the number of

inter-site interactions -- i.e., the total number of messases

sent between sites. In addition, distance, network topology,

and ueu9inq effects may be important also.

If~ - - _ _ _ _W
W I

Distributed Database Concurrency Control Page -135-
Performance of Concurrency Control Methods Section 6

To simplify our analysis we shall make a bold assumption: we

will assume that the dominant cost component is

number-of-messages, and we will ignore all other factors. Our

justification for ignoring communication volume is that most

concurrency control messages are short and so the cost of

transmitting these messages is almost certainly dominated by

"per-message" rather than "per-bit" costs. Our justification

for ignoring distance, topology, and queuing effects however is

entirely pragmatic: (1) distance and topology effects are

difficult to characterize in general-purpose networks; and (2)

queuing effects are difficult to characterize without embarking

on a quantitative analysis. We would not be surprised to

discover that distance, topology, and queuing effects are

important in practice. Nonetheless, we ignore these factors

here to keep the analysis manageable.

6.2.1 Baseline Communication Requirements

Consider an arbitrary transaction T. A certain amount of

communication is needed to process T in a distributed database

even if we ignore concurrency control. For every data item that

T reads, a dm-read operation must be sent; for every data item

that T writes, a pre-commit and a dm-write must be sent. This

minimum communication forms a baseline against which concurrency

control methods must be judged.

SA-

Page -136- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

However, this analysis is complicated by an important detail.

From a performance standpoint, communication requirements are

determined by the number of physical messass transmitted

between sites, while the notion of operation as used above is a

jo2cal concept. For example, if T writes into several data

items at a single DM, the dm-writes for these data items can be

packaged as a single physical message. Similarly, if T accesses

a data item whose DM is physically co-located with T's TM, no

physical messages are needed at all.

Consequently, the baseline communication requirements of a

transaction are a function of four parameters: (1) the

transaction's readset and writeset; (2) the TM at which the

transaction executes; (3) the distribution of data among DMs;

and (4) an execution poli. y that governs when a transaction may

issue dm-read and pre-commit operations.

The first three parameters are clear. The fourth parameter

covers a spectrum ranging from predeclaration of readsets and

writesets to continuous data-item-by-data-item access. In the

former case, all dm-reads and pre-commits are sent at one point

during transaction execution -- namely immediately before the

transaction begins its main execution. This execution policy

takes maximum advantage of the ability to package multiple

operations into a single physical message. Consequently, the

predeclaration policy induces the minimum baseline requirements

Distributed Database Concurrency Control Page -137-
Performance of Concurrency Control Methods Section 6

of any execution policy. At the other extreme, the continuous

policy causes each operation to be transmitted as a separate

physical message. Hence, this policy induces the maximum

baseline requirements of any execution policy.

The standard execution _olic, described in Section 2 lies

between these extremes. In the standard policy, dm-reads are

issued more or less continuously during transaction execution

but all pre-commits are issued when the transaction completes

its main execution.

Notice that execution policy can substantially impact the

baseline communication requirements of transactions. The choice

of execution policy may well have a greater impact on*

communication cost than the choice of concurrency control

method.

6.2.2 Communication Overhead of 2PL Techniques

In this section we examine the communication overhead of 2PL

techniques -- i.e., techniques described in Section 4.1. We

first consider rw synchronization techniques, then ww

techniques, and finally refinements of these techniques.

rw Techniques

Page -138- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

Three 2PL techniques are available for rw synchronization:

basic 2PL, primary copy 2PL, and centralized 2PL.

When basic 2PL is used for rw synchronization, explicit

lock-release operations are needed to release read-locks. These

operations introduce communication overhead. However, due to

the distinction between operations and physical messages, it is

not correct to conclude that the overhead of this technique

equals 1 message per data item read. For example, all

read-locks held by a transaction at a single DM may be released

by a single physical message. Also, if the transaction is

writing any data items at the DM, the lock-release operations

may be physically packaged with the corresponding dm-write

operations. Thus the overhead of basic 2PL for rw

synchronization is more -accurately characterized as 1 message

per DM at which the transaction reads, but does not write.

Notice that this overhead is independent of execution policy.

PrimarY_co 2PL has higher overhead than basic 2PL for rw

synchronization, because all transactions must request and

release read-locks on primary copies. For example, suppose

transaction T wishes to access logical data item X, and suppose

a non-primary copy of X is co-located with T's TM. If basic 2PL

were used for rw synchronization, T could read that copy of X

without sending any physical messages. Under primary copy 2PL,

however, T must communicate with the primary copy of X before it

DistriUuL:d Database Concurrency Control Page -139-
Performance of Concurrency Control Methods Section 6

may ruad its "local" copy. Thus, the communication overhead of

primary copy 2PL is monotonically greater than the overhead of

basic 2PL for rw synchronization.

Centralized 2PL exhibits a different kind of communication

behavior for rw synchronization than either of the preceding

techniques. In centralized 2PL locks are requested and released

at a centralized 2PL scheduler. The overhead of this technique

is directly proportional to the number of distinct points during

transaction execution at which locks may be requested. (Notice

that read-locks and write-locks must both be obtained at the

centralized scheduler for rw synchronization.) In other words,

the overhead of centralized 2PL depends upon the execution

policy.

Under 2re-declaration, all locks are obtained before transaction

execution begins.

The overhead under this policy is

1 message to request locks

4-1 message to release locks

which equals 2 messages per transaction Under the standard

policy, this overhead increases to a maximum of

1 message per dm-read to request read-locks

+1 message per transaction to request write-locks.

+1 message per transaction to release locks.

-.

Page -140- Distributed Database Concurrency Control

Section 6 Performance of Concurrency Control Methods
(

Under the continuous policy, the overhead increases further to a

maximum of

1 message per dm-read or pre-commit to request locks

+1 message per transaction to release locks.

This qualitative analysis supports the following conclusions:

(i) basic 2PL is cheaper than primary copy 2PL for rw

synchronization independent of execution policy;

(ii) basic 2PL is cheaper than centralized 2PL, under the

standard and continuous execution policies; and

(iii) centralized 2PL is cheaper than basic 2PL under the

predeclaration policy, if the average transaction reads data

from more than 2 non-local DMs at which the transaction does not

also write.

ww Tech niques

The analysis for ww synchronization is simpler. In this case,

basic 2PL, primaryopy2PL, and votin2PL incur no additional

overhead over the baseline because write-locks are implicitly

requested by pre-commits and are implicitly released by

dm-writes. However, centralized 2PL does incur overhead which

again depends upon the execution policy. Under the

predeclaration and standard policies, the overhead is

1 message to request write-locks

Distributed Database Concurrency Control Page -141-

Performance of Concurrency Control Methods Section 6

+1 message to release write-locks

which equals 2 messages per transaction. Under the continuous

policy this overhead increases to a maximum of

1 message per pre-commit to request write-locks

+1 message per transaction to release write-locks

The overhead of 2PL methods is discussed in Section 6.2.4.

Refinements

Each 2PL technique must incorporate a deadlock resolution

technique. A number of such techniques are described in

Sections 4.1.6 - 4.1.9. From a communication standpoint, these

techniques may be grouped into four categories.

1. Non-preemptve deadlock prevention -- In these

techniques, every decision to restart a transaction is

made locally, by an individual 2PL scheduler. Thus, no

communication overhead is incurred.

2. Preemptive deadlock _revention -- These techniques

require the cooperation of a 2PL scheduler and a TM in

order to restart a transaction. Thus, some

communication overhead is incurred by these techniques.

The magnitude of this cost has never been analyzed.

3. Centralized deadlock detection -- This technique

requires that each 2PL scheduler transmit *waits-for"

Page -142- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

information to a central site on a periodic basis.

This periodic transmission constitutes communication

overhead. Notice, however, that if centralized 2PL is

used, then centralized deadlock detection is free.

4. Hierarchical deadlock detection -- In these techniques

local deadlocks are detected without any communication.

However, periodic transmission of waits-for information

is needed to detect multi-site deadlocks. An

interesting special case is two-level hierarchies: the

bottom level of the hierarchy consists of 2PL

schedulers, while the top level is essentially a

centralized deadlock detector. The effect is to reduce

the communication overhead of centralized deadlock

detection, by avoiding the need to transmit local

waits-for information.

Notice also that two-level hierarchies are optimal given our

simplifying assumptions regarding communication cost. This is a

case where distance and network topology effects play a critical

role in determining the communication cost of a technique.

Each 2PL technique may also be refined by applying the

heuristics of Section 4.1.10. Of these heuristics, though, only

pledeclaration has an impact on communication requirements; this

impact has already been considered.

I, - _ _ __ __ _ - €___ _ _ __ _ _ __ _ _

Distributed Database Concurrency Control Page -143-
Performance of Concurrency Control Methods Section 6

6.2.3 Communication Overhead of T/O Techniques

In principle, T/O techniques incur no additional communication

overhead beyond the baseline requirements. That is, to read a

data item using a T/O technique, a transaction need only issue a

dm-read on that data item; no lock-releases or other operations

are needed. And to write a data item using a T/O technique, the

only necessary operations are a pre-commit and a dm-write.

Thus, no communication is required beyond the baseline

requirements.

In practice, however, the conservative T/O technique is likely

to require substantial overhead in the form of null and

request-null messages in order to avoid intolerable &dlays.

This overhead has unusual load-dependent properties. Recall

that TMs are required to periodically send null operations to

TMs when the TMs have no "real" operations to send. This

condition will arise most often when there is little load. As

load increases, however, more and more TMS will have real

operations to send to DMs, thereby decreasing the need for null

operations. Consequently the overhead of conservative

techni2ues tends to decrease as load increases. A quantitative

analysis supporting this observation is reported by (KNTH]. By

Page -144- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

contrast, the communication overhead of 2PL methods

monotonically increases with load.

Refinements

Several refinements are available for reducing the communication

overhead of conservative T/O techniques. Classes and conflict

graph analysis tend to reduce communication by reducing the

number of TMs that must communicate with each DM on a regular

basis. However, these techniques can also increase

communication because they force transactions to execute at

designated TMs; if a transaction is submitted at an "incorrect"

TM, the transaction must be transmitted to a TM where it is

permitted to execute. The infinite timestamp technique of

Section 4.2.5 can also be used to reduce the overhead of

conservative T/O methods.

Predeclaration also impacts the communication requirements of

T/O methods, by impacting the baseline requirements for

transaction execution. This effect has already been analyzed in

Section 6.2.1.

~.-

Distributed Database Concurrency Control Page -145-
Performance of Concurrency Control Methods Section 6

6.2.4 Communication Overhead of Principal Methods

Figure 6.1. summarizes the relative communication overhead of

synchronization techniques.

Diagrams of the type used in figure 6.1 wil appear throughout

our analysis. Intuitively, the higher a technique is in the

diagram, the greater its cost -- i.e., techniques at the top of

the diagram have worst performance and techniques at the bottom

have best. performance. Formally, we draw an edge from Technique

A to Technique B if our analysis leads us to conclude that A has

higher cost than B.

Returning to figure 6.1, notice that the relative performance of

techniques depends upon operating conditions in two respects.

1. The performance of centralized 2PL is better than

noncentralized 2PL if and only if the following

.condition holds:

Condition A -- predeclaration is in effect and the

average transaction reads data from more than two DMs

at which the transaction does not also write.

2. The overhead of conservative T/O is very high under

conditions of low load, but tends toward zero as load

increases.

4- - A

A _-

Page -146- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

Communication Overhead
of 2PL and T/O Techniques Figure 6.1

Legend: (i) ba2 - basic 2PL; pc2 - primary copy 2PL;
vo2 = voting 2PL; ce2 - centralized 2PL

(ii) baT = basic T/O; twr = Thomas Write Rule;
mvT - multi-version Tb; coT = conservative T/O

rw synchronization ww synchronization

max
comnunication

coT coT
(under low load) (under low load)

pc2 ce2
(if A does not hold) c1

ce2
(whether or not A holds)

ba2

ce2
(if A does hold)

coT coT

(under high load) (under high load)

0 baT, mvT ba2, pc2, vo2, baT, twr, mvT
communication

----------------eeeeeeeee-eeeeeeeeeeee----------

Distributed Database Concurrency Control Page -147-
Performance of Concurrency Control Methods Section 6

The relative overhead of principal methods can be approximated

from figure 6.1, since the overhead of a principal method is

approximately equal to the overhead of its rw technique plus its

ww technique. For some methods, however, the overhead is below

this estimate because of synergistic effects. In particular, if

centralized 2PL is used for all synchronization, and if

predeclaration is in effect, the messages needed for ww

synchronization can be physically packaged with the rw messages.

Similarly, the overhead of using conservative T/O is

approximately the same whether it is used for rw

synchronization, ww synchronization, or both. On the other

hand, the overhead of mixed methods tends to exceed the rw plus

ww overhead because of difficulties in integrating two-phase

commit. (See Section 5.3.)

Notice that not every pair of techniques has costs that are

comparable in figure 6.1. Two nodes of a diagram are called

incomparable if there is no path from one to the other. For

example, pc2 and ce2 (if condition A does not hold) are

incomparable in figure 6.1 for rw synchronization. This means

that primary copy 2PL will have more overhead than centralized

2PL in some situations but not others. We remark that future

quantitative analysis might eliminate incomparabilities of this

nature. For example, quantitative analysis might indicate that

in all practical situations, one or the other technique is

always better.

Page -148- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

Figure 6.2 summarizes the relative communication overhead of 2PL

and T/O methods. The relative overhead of mixed methods follows

a similar pattern; a comprehensive comparison of mixed methods

will not be attempted, however, because detailed implementations

of these methods have not been worked out.

The preceding analysis overlooks an optimization that is

possible when primary copy 2PL is used for rw synchronization

with primary copy or voting 2PL for ww synchronization (i.e.,

2PL Methods 6 and 7). Under this optimized policy, transactions

may issue pre-commits continuously during their execution.

However, these pre-commits are not-sent to all copjes of the

data items being updated. For Method 6, these pre-commits are

only sent to primary copies; for Method 7, these pre-commits are

sent to a majority of copies. Pre-commits are sent to all other

copies when the transaction terminates. Thus, this policy is a

compromise between the standard and continuous execution

policies.

This new policy offers better performance than the continuous

policy for Methods 6 and 7. In the absence of quantitative

data, however, we are unable to compare the performance of

Methods 6 and 7 under the new policy to the performance of other

methods under the usual policies.

Distributed Database Concurrency Control Page -149-
Performance of Concurrency Control Methods Section 6

Communication overhead
of 2PL and T/b Methods Figure 6.2

Legend: (1), (ii) see figure 6.1
(iii) the notation "xly" means use technique x for rw

synchronization and technique y for ww synchronization(iv)[MP number! - 2PL method number (see Section 5.1)
LT/O number = T/O method number (see Section 5.2)

max

communication bT v/o

coT/baT, twr, mvT, coT

(under low load)

c2ce2 Ce2/ce2
12P 8)2PL 12]

PL (if A does not hold)

T I,
pc2/ba2, pc?, vo2 ba2/ce2 ce2/ ba2, pc2, vo2

(2PL 5-73 [2PL 4] [2P 9-11)

I~ (if A does not hold)

ba2/ba2, pc2, vo2
[2PL 1-33

ce2/ba2, pc2, vo2, ce2
12kL 9-12)

(if A does hold)

baT', mvT/coT
coT/baT, twr, mvT, COT
LT/O 4, B, 9-122
(under high load)

0 baT, mvTr/bal, twr, mvT
communication [T/O 1-3, 5-73

Page -150- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

6.3 Local Processing Overhead

Every technique described in Section 4 places some demand on

local computation resources. In the absence of quantitative

performance data it is difficult to estimate the magnitude of

these demands. However, it is possible to compare the local

processing overhead of principal methods in general terms.

We believe that the major source of local processing overhead

for principal methods is the maintenance and utilization of

synchronization information. By "synchronization information"

we mean locks, timestamps, and multi-versions. Numerous data

structures can be imagined-for the storage of this information,

and these data structures can be accessed by many different

algorithms. Because of these myriad differences, it is

impractical to estimate local processing cost in any absolute

sense. However, qualitative analysis is possible if we make a

few reasonable assumptions.

First, we assume that the cost of maintaining and utilizing

synchronization information is an increasing function of its

volume. For example, if Method A requires more locks than

Method B, then Method A will have more local processing overhead

than Method B. This assumption is clearly reasonable.

Distributed Database Concurrency Control Page -151-
Performance of Concurrency Control Methods Section 6

Second, we assume that the unit cost of maintaining and

utilizing lock information is identical to the unit cost of

timestamps. For example, if Method A requires N locks and

Method B requires N timestamps, the methods are assumed to have

identical cost. This assumption is less clear-cut than the

first assumption. However, we believe it to be reasonable

because the same basic operations must be supported relative to

both kinds of synchronization: given the name of a data item,

say x, we must be able to retrieve and update the

synchronization information for x. Any algorithm that

implements these operations for lock information can be adapted

to handle timestamps for essentially the same cost, and vice

versa.

Finally, we assume that the unit cost of extra versions (for

multi-version T/O) is greater-than the unit cost of locks or

timestamps. This assumption is reasonable because an extra

version consists of a timestamp and a value.

Given these assumptions we analyze the local processing overhead

of 2PL techniques and methods in Section 6.3.1; we analyze T/O

techniques and methods in Section 6.3.2; and we compare 2PL

methods to T/O methods in Section 6.3.3. Mixed methods are

considered briefly in Section 6.3.4.

Page -152- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

6.3.1 Local Processing Overhead of 2PL Techniques and Methods

Each 2PL technique requires lock information for all data items

being accessed by active transactions. Once a transaction

terminates, all of its locking information may be forgotten.

The precise lock requirements differ from technique to technique

because of differences in the way redundant data is handled.

Consider a logical data item X with copies xl,..., Xn, and

suppose transaction T wishes to update X. If basic 2PL is used

for rw or ww synchronization, write-locks must be obtained on

all copies of X. However, if primary copy 2PL is used for rw

and ww synchronization, a write-lock need only be set on one

copy of X, namely the primary copy. Centralized ZPL has the

same requirements for lock information as primary copy 2PL.

Voting 2PL lies between basic 2PL and primary copy 2PL; under

voting 2PL, write-locks must be set on a mj2l.Ki of copies of

X.

The overhead of principal 2PL methods can be inferred from the

above.

(i) All 2P1, methods require read-locks for data items that

are being read by active transactions.

.4-- - -- _____________

Distributed Database Concurrency Control Page -153-
Performance of Concurrency Control Methods Section 6

(ii) All 2PL methods that use basic 2PL for rw or ww

synchronization (i.e., Methods 1-4, 5, 9) require write-locks on

all copies of logical data items being updated by active

transactions.

(iii) 2PL methods that use primary copy or centralized 2PL

for rw and ww synchronization (i.e. Methods 6, 8, 10, 12)

require a single write-lock for each logical data item being

updated by active transactions.

(iv) 2PL methods that use primary copy or centralized 2PL

for rw synchronization and voting 2PL for ww synchronization

(i.e., Methods 7, 11) require write-locks on a majority of

copies of each logical data item being updated by active

transactions.

This analysis is summarized in figure 6.3.

6.3.2 Local Processing Overhead of T/O Techniques and Methods

Each non-conservative T/O technique requires timestamps for data

items accessed by recent transactions, since timestamps are only

forgotten after a pre-determined time interval has elapsed.

Multi-version techniques require that extra versions be

maintained for recently accessed data items. Conservative T/O

techniques do not require any timestamps for data items -- these

techniques only require timestamped operations.

Page -154- Distributed Database Concurrency Control

Section 6 Performance of Concurrency Control Methods
-- -----------------------
Local Processing Overhead
of 2PL and T/O Methods Figure 6.3

max ba2/ba2, pc2, vo2, ce2
local processing pc2, ce2/ba2,

r2PL 1-4, 5, 91

N/
pc2, ce2/vo2
[2PL 7,113

pc2, ce2/pc2, ce2
r2PL 6, 8, 10, 123

min
local processing

Distributed Database Concurrency Control Page -155-

Performance of Concurrency Control Methods Section 6

The local processing overhead of T/O methods is as follows.

(i) T/O Methods 1, 2, and 4 (basic T/O for rw

synchronization and basic T/0, TWR, and conservative T/O for ww)

require R-timestamps for all data items read by recent

transactions and W-timestamps for all data items written by

recent transactions.

(ii) T/O Method 3 (basic T/O for rw and multi-version T/O

for ww) requires an R-timestamp for each items read by a recent

transaction, and extra versions for each data item written by a

recent transaction.

(iii) T/O Methods 5 and 8 (multi-version T/O for rw

synchronization, with basic T/O and conservative T/O for ww

synchronization) have the same requirements as Method 3

(iv) T/O Method 7 -(multi-version T/O for rw and ww)

requires multiple R-timestamps (resp. extra versions) for each

data item read (resp. written) by a recent transaction.

(v) T/O Methods 9 and 10 (conservative T/O for rw, basic

T/O and TWR for ww) require a W-timestamp for each data item

written by a recent transaction. These methods do not require

any P-timestamps.

(vi) T/O Method ii (conservative T/O for rw synchronization

and multi-version T/O for WW) requires extra versions for each

data item written by a recent transaction.

(vii) T/O Method 12 (conservative 2PL T/O for all

synchronization) requires no data timestamps at all.

Page -156- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

Figure 6.4 summarizes the local processing overhead of T/O

methods.

6.3.3 Comparison of 2PL and T/O Methods

We may compare the local processing overhead of 2PL and T/O

methods if we assume that every active transaction is also

considered to be a recent transaction. This amounts to assuming

that timestamps of active transactions are never forgotten,

which is probably a reasonable assumption.

Given this assumption, we can compare the local processing

overhead of the basic 2PL Method (2PL Method 1) to that ot the

basic T/O method (T/O Met-hod 1). The 2PL method requires read-

and write-locks for data accessed by active transactions, while

the T/O method requires R- and W-timestamps for data accessed by

recent transactions. Since the set of active transactions is a

subset of the recent transactions (by assumption), the number of

locks needed by the 2PL method is less-than-or-equal -to the

number of timestamps needed by the T/O method. This translates

into lower cost for the 2PL method.

Since 2PL Method 1 is the most expensive 2PL method relative to

local processing overhead (see figure 6.3), it follows that all

2PL methods have lower processing cost than T/O Method 1.

Distributed Database Concurrency Control Page -157-
Performance of Concurrency Control Methods Section 6
-- ---------------------I Local Processing Overhead
Of 2PL Methods Figure 6.4

Ia
local processing

mvT/mvT
U/0O 72

m TbT, coT
baT/mv

3.T' 35, 8]1

coT/mvT baT/baT, twr, coT
IT - ZT/O 1, 2, 4)

coT/baT, twr
[T/0 9, 10J

V coT/coT
a jT/O 123

local processingi

---- --- --- --- --- --- ---- --- --- --- --- --- --- ----

Page -158- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

However, all 2PL methods have greater processing overhead than

T/O Method 12 (conservative T/O for all synchronization), since

the latter method requires no stored synchronization

information.

This analysis is summarized in figure 6.5

6.3.4 Local Processing Overhead of Mixed Methods

All mixed methods require data item timestamps or multi-versions

in order to generate transaction timestamps using the algorithm

of Section 5.3.1. Mixed methods that use multi-version T/O

require approximately as much synchronization information as T/O

Methods 3, 5, and 8; other mixed methods have requirements

similar to T/O Methods 1, 2, and 4. I

I

Distributed Database Concurrency Control Page -159-
Performance of Concurrency Control Methods Section 6
-- ------

Local Processing Overhead
of T/O Methods Figure 6.5

max mvT/mvT
local processing [T/O 73

mvT/baT, cot
baT/mv T

tT/O 3, 5, 83

coT/mT baT/baT, twr, coT

[T/O 1) [T/O 1, 2, 4]

coT/baT, twr ba2/ba2, pc2, vo2, ce2
T/O 9, 103 pc2, ce2/ba2

2P 1-4, 5, 9J

pc2, ce2/vo2
f2PL 7, 111

pc2, ce2/pc2, ce2
2PL 6, 8, 10, 12

coT/coT

0 [T/o 123
local processing

Page -160- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

6.4 Transaction Restarts

Most concurrency control methods have the ability to restart

transactions either for deadlock resolution purposes or as a

normal part of their operation. The number of restarts induced

by a method is an important component of the method's cost. If

the number of restarts grows too large the system can thrash,

wasting much of its effort executing transactions that are

subsequently restarted. The cost per restart is also an

important performance factor.

6.4.1 Restart Behavior of-2PL Techniques

The restart behavior of 2PL techniques depends largely on the

choice of deadlock resolution techniques. The best restart

behavior is exhibited by deadlock detection techniques (assuming

the rhantom deadlock problem can be controlled; see Section

4.1.8). With these techniques transactions are only restarted

when a deadlock actually occurs. In addition, these techniques

are able to select inexpensive "victim" transactions to restart.

By contrast, deadlock prevention techniques induce restarts when

the danger of deadlock exists, and these techniques are not at

Distributed Database Concurrency Control Page -161-Performance of Concurrency Control Methods Section 6

liberty to select "victims" on the basis of restart cost. Thus,

deadlock detection induces fewer restarts and has a lower cost

pef restart than deadlock prevention.

For ww synchronization, there are additional differences among

2PL techniques becalise of differences in the way redundant data

is handled. Consider a logical data item X with copies Xl,...xn

and suppose two concurrent transactions wish to write into X.

If basic 2PL is used for ww synchronization, these transactions

can deadlock simply due to the order in which they obtain locks

on xl,...xn. For example, if one transaction locks xl first and

the other transaction locks x2 first, the result is deadlock.

However, if primary copy 2PL, voting 2PL, or centralized 2PL are

used for ww synchronization, deadlocks of this type cannot

arise.

We can further distinguish between these techniques by observing

that primary copy 2PL and centralized 2PL are immune to this

type of deadlock no matter how many concurrent transactions try

to update X. Voting 2PL, however, is only immune when two or

fewrr transactions are involved. For example, if three

transactions simultaneously try to update X, each could obtain

write-locks on one-third of the copies, thereby preventing any

transaction from obtaining a majority.

The restart behavior of 2PL techniques is summarized in figure

6.6.

Page -162- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

Restart Behavior of 2PL Techniques Figure 6.6

Legend: "-D" means deadlock detection;
"I-P" means deadlock prevention

rw synchronization ww synchronization
max

resart bW, pc2, ce2 -P ba2 -1)

ba2 -D

Wa , p c 2 , c e 2 -D
v o 2 -Pv 2 D

pc2, ce2 P

pc2, ce2 -1)

min
restarts

-- - - - - - - - - - - - - - -- - - - - - - ---- - - -

Distributed Database Concurrency Control Page -163-
Performance of Concurrency Control Methods Section 6

Predeclaration also has a substantial impact on restart

behavior. Predeclaration forces run-time conflicts to occur

before transactions begin their main execution. This tends to

reduce the cost per restart -- if a transaction is restarted

during its predeclaration phase there is less wasted effort than

if the transaction is restarted near the end of its execution.

However, predeclaration also tends to increase the number of

restarts for two reasons. First, it is often difficult to

predict the data item that a transaction will access before it

executes. To be on the safe side, it is necessary to lock all

data items the transaction might access. These extra locks

increase the probability of run-time conflict and deadlock. And

second, predeclaration causes locks to be held for longer

periods of time, which also increases the probability of

run-time conflict and deadlock.

More analysis is needed to determine whether (or under what

conditions) the good tendencies of predeclaration outweigh the

bad.

____.. _________.....___

Page -164- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

6.4.2 Restart Behavior of T/O Techniques

The restart behavior of T/O techniques varies over a wide rang(-.

Optimal restart behavior is exhibited by conservative T/0, the

Thomas Write Rule, and multi-version T/O (for ww

synchronization), because these techniques never induce

restarts. The worst restart behavior is exhibited by basic T/P

this technique induces a restart whenever a DM r _

conflicting operations out of timestamp order. Multi-version

T/O (for rw synchronization) lies between these extremes.

The restart behavior of T/O techniques is summarized in figure

6.7.

Predeclaration reduces the cost _er restart for T/O techniques

just as it does for 2PL techniques.

Piedeclaration may also reduce the number of restarts when

non-conservative T/O techniques are used for rw synchronization.

This effect may occur if (a) clocks in different TMs are

reasonably well-synchronized, and (b) the network delivers

messages with approximately equal delay. If these conditions

are met, predeclaration will tend to cause DMs to receive

operations in timestamp order, thereby reducing the likelihood

Distributed Database Concurrency Control Page -165-

Performance of Concurrency Control Methods Section 6

Restart Behavior of T/b Techniques Figure 6.7

rw synchronization ww synchronization
max

restarts
baT a

* tnvT

re~arscoT twr, mvT, coT

I - ______________________0_-

Page -166- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

of rejection. This effect has been reported in simulation

studies by (Ries 11.

Predeclaration may also increase the number of restarts for

non-conservative T/O techniques because of the need to

"pre-access" all data items a transaction might access.

6.4.3 Comparison of 2PL and T/O Techniques

In this section we compare the restart behavior of 2PL

techniques to that of T/O techniques.

We begin by comparing basic-2PL-with-deadlock-prevention to

basic T/O. To do so, we adopt the Wait-Die technique of [RLS]

as our "standard" deadlock prevention technique, see Section

4.1.7. The Wait-Die. technique induces a restart whenever a DM

receives conflicting operations for active transactions out of

timestamp order. Basic T/0, on the other hand, induces a

restart whenever a DM receives conflicting messages for ary

transactions out of timestamp order. Thus we see that Wait-Die

has similar, but somewhat better, restart behavior than basic

T/O.

Notice also that basic-2PL-with-deadlock-prevention (i.e.

Wait-Die) has the worst restart behavior of any 2PL technique

(see figure 6.6). Since basic T/O is worse than Wait-Die, it

Distributed Database Concurrency Control Page -167-
Performance of Concurrency Control Methods Section 6

follows that basic T/O has worse restart behavior than any 2PL

technique.

At the opposite end of the restart spectrum, we have techniques

which induce no restarts: conservative T/0, the Thomas Write

Rule, and multi-version T/O (for ww synchronization). Since

these techniques induce no restarts, they have better restart

behavior than any 2PL technique.

Insofar as ww synchronization is concerned, this completes the

comparison of 2PL and T/O techniques. See figure 6.8.

For rw synchronization, however, we must compare multi-version

T/O to the various 2PL techniques. Consider multi-version T/O

vs. basic-2PL-with-deadlock-prevention (i.e. Wait-Die). In one

way, multi-version T/O is better: under multi-version T/O

dm-reads never induce restarts, whereas under Wait-Die a "late"

dm-read can sometimes cause a restart. In particular, under

Wait-Die, a dm-read(x) with timestamp TS will induce a restart

if some transaction with a larger timestamp is holding a

write-lock on x. On the other hand, there are situations in

which Wait-Die is bL .ter than multi-version T/O. For example,

under Wait-Die a pre-commit(x) with timestamp TS can safely

arrive after a dm-read(x) with larger timestamp, provided the

transaction issuing the dm-read had already terminated.* Under

multi-version T/0, however, the pre-com-mit would be rejected.**

Page -168- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

Restart Behavior of 2PL and T/b Techniques Figure 6.8

rw synchronization ww synchronization
max

restarts
baT baT

baT, pc2, ce2 -P ba2 -P

mvT

vo2 -P

Wa, pc2, ce2 -D vo2 -D

pc2, ce2 -P

pc2, ce2 -D

coT twr, mvT, coT
0

restarts

Distributed Database Concurrency Control Page -169-
Performance of Concurrency Control Methods Section 6

We see no qualitative way of deciding which of the above effects

is most likely. In the absence of quantitative analysis, we

cannot decide whether multi-version T/O or Wait-Die has better

restart behavior.

It is impossible to directly compare multi-version T/O to any

other 2PL techniques for similar reasons.

Figure 6.8 summarizes the relative restart behavior of 2PL and

T/O techniques.

6.4.4 Restart Behavior of Principal Methods

As far as we know, the restart behavior of a method can be

inferred from the restart behavior of its rw and ww techniques.

We know of no synergistic effects that complicate this analysis.

Thus, the relative restart behavior of principal methods can be

inferred from figure 6.8. This behavior is summarized in figure

6.9.

Notice that figure 6.9 includes 2PL, T/0, and mixed methods.

*Technically it is only necessary for the transaction to
have released its read-lock on x.,*Ur ,(ess .notiier pre-commit(x) with timestamp TS",
TS<T:2 "<TS had a1ready been rcceived.

J00- .l ..- ..

Page -170- Distributed Database Concurrency Control
Section 6 -Performance of Concurrency Control Methods

--
Restart Behavior of Principal Methods Figure 6.9

Legend: (i) 2PL =any 2PL technique
(ii) any 2PL technique can use deadlock prevention or detection;

in all cases prevention induces more restarts than detection

baT/ baT

Z \I
mvT/baT 2PL/baT baT/ba2

coT/.aT ,nvT/ba2 , 2PL/ba2 111 baT/vo2

co/b2 mvT/vo2e 2PL/vo2 baT/pc2, ce2

coT/vo2 mvT/pc2,;ce 2 2PL/pc2, ce2 baT/twr, mvT, coT

coT/pc2, ce2 mvT/twr, 2PL/twr, mvT, coT

/ mvT, co

coT/twr,

mvT, coT"

---- ---------------------- --------------------------------------

Distributed Database Concurrency Control Page -171-
Performance of Concurrency Control Methods Section 6

6.5 Transaction Blocking

Many synchronization techniques have the ability to block

transactions -- i.e., to suspend or intentionally delay their

execution. For example, 2PL techniques will block a transaction

if it requests an unavailable lock. Blocking is a complementary

tactic to transaction restart. Both tactics are used to prevent

run-time conflicts from causing non-serializable operation.

Blocking, however, is a much cheaper tactic than restarts -- a

block merely delays a transaction whereas a restart forces the

transaction to be re-executed. The number of blocks induced by

a concurrency control method and the delay-per block are

important components of the method's cost.

6.5.1 Blocking Behavior of 2PL Techniques

The blocking behavior of 2PL techniques depends principally on

the deadlock resolution scheme. Deadlock detection induces more

blocking than deadlock prevention. Under deadlock detection a

t:ansaction T will be blocked if and only if T requests a lock

'T at conflicts with a lock owned by another transaction T. T

I . nairi bIck,-d titiI (a) I .1 ses its lock, or (b) T or

" : ' ' !r : _ a.,._.-

Page -172- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

T' is restarted by the deadlock detector. Under deadlock

prevention, however, the system does not always block T when it

requests a conflicting lock. Instead, the system can restart T

or the transaction with which it conflicts. Thus deadlock

prevention induces a smaller number of blocks than deadlock.

detection. In addition, the delay per block is smaller since no

deadlocks are possible.

Notice that the blocking behavior of these techniques is exactly

complementary to their restart behavior.

Predeclaration also influences blocking behavior.

Predeclaration tends to increase the number of blocks because of

the need to lock all data items a transaction might access.

Predeclaration also tends to increase the delay per block since

locks are held for longer periods of time.

6.5.2 Blocking Behavior of T/O Techniques

The blocking behavior of T/O techniques varies widely. At one

extreme we have conservative T/O. Tnis technique uses blocking

as its normal mode of operation to guarantee that conflicting

operations are processed in timestamp order. The price paid for

this conservatism is that transactions are blocked even when no

conflicts exist.

4-_ _ _ _ _ _ _ _

Distributed Database Concurrency Control Page -173-
Performance of Concurrency Control Methods Section 6

At the other extreme we have the non-conservative T/O

techniques. These techniques never induce blocking when used

for ww synchronization. When used for rw synchronization, these

techniques have intermediate blocking behavior. Basic T/O is

required to block dm-read operations under the following

conditions: a DM will block a dm-read(x) with timestamp TS if

it has received a pre-commit(x) with timestamp less-than TS, but

has not yet received the corresponding dm-write(x); this

blocking is necessary for two-phase commit to work properly as

described in Section 4.2.9. Multi-version T/O is required to

block dm-read operations under slightly less restrictive

conditions also described in Section 4.2.9. Neither technique

is ever required to block pre-commit or dm-write operations.

Various refinements also influence the blocking behavior of T/O

techniques. Classes, conflict graph analysis, and the "infinite

timestamp" heuristic of Seotion 4.2.5 improve the blocking

behavior of conservative T/O. The "delay" heuristic of Section

4.2.10 degrades the blocking behavior of non-conservative T/O

techniques in order to improve restart behavior.

Page -174- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

6.5.3 Comparison of 2PL and T/O Techniques

We now compare the blocking behavior of 2PL and T/O techniques.

For ww synchronization the comparison is straightforward.

Conservative T/O exhibits the worst behavior, since conservative

T/O blocks transactions even in the absence of conflicts.

Non-conservative T/O exhibits the best behavior, since thes

techniques never block transactions. 2PL techniques lie be.

these extremes, since these techniques block transactions w.

run-time conflicts are deleted: of course, deadlock preventio,

has better blocking behavior than deadlock detection. This

comparison is summarized in figure 6.10.

For rw synchronization the analysis is more complex. Let us

begin by comparing basic 2PL with deadlock prevention to basic

T/O. As in Section 6.4, we adopt Wait-Die as our standard

deadlock prevention technique for purposes of this comparison.

Wait-Die is required to block dm-read operations under the

following conditions: a DM will block a dm-read(x) with

timestamp TS if a transaction with smaller timestamp owns a

write-lock on x; this latter condition arises if the DM has

received a pre-commit(x) with timestamp less-than TS, but has

Distributed Database Concurrency Control Page -175-
Performance of Concurrency Control Methods Section 6

--
Blocking Behavior of 2PL and T/O Techniques Figure 6.10

rw synchronization ww synchronization
max

blocking
coT coT

2PL -D

I
2PL -D

2PL -P

baT 2PL -P"

mvT

baT, twr, mvT
0

blocking

--

Page -176- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

not yet received the corresponding dm-write. Basic T/O is

required to block dm-read messages under the exact same

conditions; see Section 6.5.2. Thus, Wait-Die and basic T/O

have identical blocking insofar as dm-read messages are

concerned.

These techniques have different blocking behavior, however, when

pre-commits are considered. Wait-Die is required to block a

pre-commit(x) with timestamp TS if a transaction with smaller

timestamp owns a read-lock on x. Basic T/O is never required to

block pre-commit operations. Thus Wait-Die has worse behavior

tnan basic T/O when we consider pre-commit operations.

Since Wait-Die and basic T/O have identical blocking behavior

for dm-reads, while Wait-Die has worse behavior for pre-commits,

we conclude that Wait-Die has worse blocking behavior overall.

The following observations will conclude the comparison for rw

synchronization.

(i) The blocking behavior of 2PL techniques depends

principally on the deadlock resolution technique, i.e., primary

copy 2PL and centralized 2PL have similar behavior to basic 2PL

when all use the Wait-Die deadlock prevention technique.

Consequently, all 2PL techniques that use Wait-Die have worse

blocking behavior than basic T/O.

-4-

Distributed Database Concurrency Control Page -177-
Performance of Concurrency Control Methods Section 6

(ii) All 2PL techniques with deadlock detection have worse

behavior than 2PL techniques with deadlock prevention, see

Section 6.5.1. With deadlock detection every run-time conflict

causes a transaction to be blocked, but transactions are not

blocked in the absence of conflict.

(iii) Conservative T/O has worse blocking behavior than any

2PL techniques, since conservative T/O blocks transactions even

when conflicts do not exist.

(iv) Multi-version T/O has the best blocking behavior of

any technique, since this technique is even better than basic

T/O; see Section 6.5.2.

This comparison is summarized in figure 6.10.

6.5.4 Blocking Behavior of Principal Methods

As in the case of restart behavior, it appears that the blocking

behavior of a method can be inferred from the blocking behavior

of its component techniques. Figure 6.11 summarizes this

behavior.

ji

Page -178- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

Blocking Behavior of Principal Methods Figure 6.11

Legend: any 2PL technique can use deadlock detection or deadlock
prevention. In all cases, prevention has better blocking
behavior than detection.

Sc°T/coTxx

2PL/coT / o/o. coT/2PL

baT/coT 2L2PL/2PL coT/baT, twr, mvT

mvT/coT baT/2PL 2PL/baT, twr, mvT

P b T t
mvT/2PL baT/baT, twr, mvT

mvT/baT, twr, mvT

Distzibuted Database Concurrency Control Page -179-
Performance of Concurrency Control Methods Section 6

6.6 Dominant Methods

Our analysis of concurrency control performance is summarized in

figures 6.2, 6.5, 6.9, and 6.11. The reader can observe that no

concurrency control method is optimal under all cost factors.

2PL methods tend to rank in the middle of the field under all

cost factors. Non-conservative T/O methods have minimum

communication overhead and good blocking behavior, but moderate

local processing overhead and poor restart behavior.

Conservative T/O methods vary even further: they have minimum

local processing overhead and optimal restart behavior, but very

poor blocking behavior; their communicatio;' overhead is high

under low load, but low under high load. Thus no method has

best performance under all conditions.

However, we can identify some methods which are -tter than

certain other methods under all conditions. We say that Method

A dominates Method B if A is better than B under all cost

factors; Method A is a dominant method if no other method

dominates it. For any given system and application, some

dominant method will have optimal performance. When selecting a

concurrency control method for a given environment, one need

only consider dominant methods; all other methods are

irrelevant.

Page -180- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

In Section 6.6.1 we examine the relative performance of

principal 2PL methods under all four cost factors, and we show

that four 2PL methods are dominant. They are 2PL Method 2

(basic 2PL for rw synchronization, with primary copy 2PL for

ww); 2PL Method 6 (primary copy 2PL for all synchronization);

2PL Method 10 (centralized 2PL for rw synchronization, with

primary copy 2PL for ww); and 2PL Method 12 (centralized 2PL for

all synchronization). For any given system and application, one

of these four 2PL metho-. will out-perform all other 2PL

methods; thus the other 8 principal 2PL methods need never be

considered when designing a concurrency control method. Noti,

that the "standard" distributed 2PL method -- 2PL Method 1

(basic 2PL for all synchronization) -- is not one of the

dominant methods.

In Section 6.6.2 we examine principal T/O methods in a similar

fashion, and again identify four dominant methods. These are

T/O Method 2 (basic T/O .for rw synchronization, with the Thomas

Write Rule for ww); T/O Method 7 (multi-version T/O for all

synchronization); T/O Method 10 (conservative T/O for rw

synchronization, with the Thomas Write Rule for ww); and T/O

Method 12 (conservative T/O for all synchronization).

In Section 6.6.3 we consider mixed methods. Our analysis of

mixed methods in Section 5 is not detailed enough to identify

all dominant T/O methods. Nonetheless, we identify three

__,ww

FUNDAMENTAL ALGORITHMS FOR CONCURRENCY CONTROL IN DISTRIBUTED 0 -ETC(U)

MAY 80 P A BERNSTEIN, N GOODMAN F3 0602-79-C-0191

UNCLASSIFIED RADC-TR-80-158 NL

*mmmmommmm
NEEhEhhEhhE-

LmhmWhhhhImu

111115i 1.4

MIlCR ill I CHAR

MICROCOPY R[SOWIION ILI CHARTI

Distributed Database Concurrency Control Page -181-
-Performance of Concurrency Control Methods Section 6

dominant mixed methods with interesting performance

characteristics. They are Mixed Method 2 (basic 2PL for rw

synchronization, with the Thomas Write Rule for ww). Mixed

Method 6 (primary copy 2PL for rw synchronization, with the

Thomas Write Rule for ww); and Mixed Method 10 (centralized 2PL

for rw synchronization, with the Thomas Write Rule for ww). In

Section 6.7 we will see that these mixed methods out-perform

dominant 2PL and T/O methods in certain system and application

environments.

Interestingly, 7 of the 11 dominant methods identified in this

section have not been previously described in the literature.

These are 2PL Methods 2 and 10, T/O Methods 2 and 7, and all

three mixed methods. The remaining 4 methods have been

described in the following contexts.

(i) 2PL Method 6 is essentially the primary copy algorithm

proposed by [Stonebraker]; this is also the algorithm used in

the distributed INGRES system [SN].

(ii) 2PL Method 12 is the primary site algorithm proposed

by (AD].

(iii) T/O Method 10 is approximately the SDD-l concurrency

control mechanism described by [BSR].

(iv) T/O Method 12 is the algorithm proposed by [SM] for

the National Software Works; a similar algorithm is described by

[KNTH].

4 - ________ ~-Ak

Page -182- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

6.6.1 Dominant 2PL Methods

In this section we compare the performance of principal 2PL

methods to determine which are dominant. This analysis is

organized pedagogically in terms of rw synchronization. We

first consider methods that use basic APL ,for rw

synchronization; next we consider methods that use primary copy

ZPL for rw synchronization; -finally, we consider methods that

use centralized aPL for rw synchronization.

Figure 6.12 summarizes the performance of ZPL methods that use

basic 2PLfor rw synchronization, (figure 6.12 is obtained from

figures 6.2, 6.5, 6.9,

and 6.11 by eliminating all other methods from the figures).

All methods that use basic 2PL for rw synchronization have

identical local processing overhead, because all require

read-locks and write-locks on all stored data items being

accessed by active transaction. In addition, these methods have

identical blocking behavior, although the blocking behavior is

dependent on the choice of deadlock resolution scheme.

Therefore, to choose among these methods, we need only consider

communication overhead and restart behavior.

Aa

.. . ,. .%-.l " "
-

i'

Distributed Database Concurrency Control Page -183-
Performance of Concurrency Control Methods Section 6

--
Relative Performance of 2PL Methods
Usine Basic 2PL for rw Synchronization Figure 6.12

_______________________ _________________________

Comunication Local Processing Restart Blocking
Overhead Overhead Behavior Behavior

ba/ce2 ba2/2PL ba2/ba2 ba2/2PL
E.2PL 412 £2L1-43 [2PL 11 1jZPL 1-43

4, 14,
ba2/ba2, pc2, vo2 ba2/vo2
(2PL 1-31] £2PL 3]

ba2/pc2, ce2
[2PL 2,4]

Page -184- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

Communication overhead for these methods is minimized by

selecting any ww technique except centralized 2PL; centralized

2PL incurs extra overhead in these methods because it requires

extra messages to request and release write-locks at a central

site. Restart behavior is optimized by selecting primary copy

2PL or centralized 2PL for ww synchronization, because these

techniques avoid deadlocks caused by ww synchronization on

redundant copies of data. Thus, primary bopy 2PL is an optimal

ww synchronization technique under all cost factors. This means

that 2PL Method 2 (basic 2PL for rw synchronization, with

primary copy 2PL for ww synchronization) dominates all 2PL

methods that use basic 2PL for rw synchronization.

Next, consider methods that use primary copy 2PL for rw

synchronization. The performance of these methods under all

cost factors is summarized in figure 6.13. We see from the

figure that communication overhead is minimized by any ww

technique except centralized 2PL. Local processing overhead and

restart behavior are both optimized by selecting primary copy

2PL or centralized for ww synchronization. Blocking behavior is

not affected by the choice of ww technique. Thus, we see again

that primary copy 2PL is an optimal ww technique under all cost

factors, and so 2PL Method 6 (primary copy 2PL for all

synchronization) dominates all 2PL methods that use primary copy

2PL for rw synchronization.

j

mpg V PFF-

Distributed Database Concurrency Control Page -185-
Parformance of Concurrency Control Methods Section 6

Relative Performance of 2PL Methods
Using Primary Copy 2PL
for rw Synchronization Figure 6.13

Coemunication Local Processing Restart Blocking
Overhead Overhead Behavior Behavior

pc2/ce2 pc2/ba2 pc2/ba2 pc2/2L
C2PL 83 C2PL 53 E2PL 5) P 5§

PC2/ba2, pc2, vo2 pc2/vo2 pc2/vo2
[2PL 5-7.] r-2PL 7] C2PL 73

pc2lpc2, ce2 pc2/pc2, ce2
C2PL 6, 83 E 2PL 6, 81

Page -186- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

Finally, consider methods that use centralized 2PL for rw

synchronization. The performance of these methods under all

cost factors is indicated in figure 6.14. The performance of

these methods depends on an application characteristic, namely,

condition A of Section 6.2.2. If condition A does not hold, the

best ww technique is again primary copy 2PL. However, if

condition A does hold, then primary copy 2PL and centralized 2PL

are equally effective ww techniques. 'In this case, it is

probably best to select centralized 2PL for ww synchronization,

since the resulting method supports centralized deadlock

detection at no extra cost. Thus, in practice, there are two

dominant methods that use centralized 2PL for rw

synchronization: Method 10 (primary copy 2PL for ww), if

condition A does not hold; and Method 12 (centralized 2PL for

ww), if condition A does hold.

The performance of the four dominant 2PL methods is compared in

figure 6.15. All four methods have identical restart and

blocking behavior. The choice between these methods is strictly

a tradeoff between communication and local processing overhead.

Moreover, if condition A holds, 2PL Method 12 (centralized 2PL

for all synchronization) simultaneously minimizes both cost

factors - i.e., if condition A holds, Method 12 dominates all

other 2PL methods. However, if condition A does not hold, one

is forced to balance the extra communication overhead of 2PL

Methods 6 and 10 against the extra local processing overhead of

* I -.- -_.' -*

Distributed Database Concurrency Control Page -187-
Performance of Concurrency Control Methods Section 6

--
Relative Performance of 2PL Methods
Using Centralized 2PL
for rw Synchronization Figure 6.14

Note: Condition A as defined in Section 6.2.2

Communication Local Processing Restart Blocking
Overhead Overhead Behavior Behavior

_ce2/ce2 ce2/ba2 ce2/ba2 ce2/2PL
L 2PL 12. [2PL 9) [2PL'9 PL 9- iz
(if A does not hold)

I ce2/vo2 ce2/vo2

E2PL 113 12PL 11j

ce2/ba2, pc2, vo2
C 2PL 9-117

(if A does not hold)
ce2/pc2, ce2 ce2/pc2, ce2

L2PL 10, 12) r2PL 10, 123

ce2/2PL
E2PL 9-11]
(if A does hold)

4-4

Page -188- Distributed Database Concurrency Control

Section 6 Performance of Concurrency Control Methods
- ---

Relative Performance of
Dominant 2PL Methods Figure 6.15

Comunication Local Processing Restart Blocking

Overhead Overhead Behavior Behavior

ce2/pc2 ba2/pc2 ba2/pc2 ba2/pc2
2PL 10 f 2PL 2] pc2/pc2 pc2/pc2

(if A does not hold) ce2/pc2, ce2 ce2/pc2, ce2

pclpc2 22PL 2, 6, 10, 1l7 [2PL 2, 6, 10, 12]
Ir2/pc2 ce2/Ip:2, ce2.

2PL 63 [2PL 6, 10, 12.

ba2/pc2
E2PL 23

ce2/ce2
C 2PL 1)
(if A does hold)

--

Distributed Database Concurrency Control Page -1899.
Performance of Concurrency Control Methods Section 6

2PL Method 2. This issue is discussed further in Section 6.7.

Li

4* ii' i~i~i ii 'ii- -,-'- ° i :ii # i i i > . ,-,,.

Page -190- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

6.6.2 Dominant T/O Method

We now analyze dominant T/O methods in a similar fashion.

Figures 6.16-6.18 summarize the relative performance of T/O

methods that use basic T/0, multi-version T/0, and conservative

T/O respectively for rw syncheonization.

Consider T/O methods that use basic T/O for rw synchronization.

Communication overhead and blocking are optimized by selecting

22y non-conservative technique for ww synchronization. Restarts

are minimized (in fact eliminated) by using any ww technique

except basic T/O. Computation overhead is minimized by any ww

technique except multi-version T/O. Thus, the Thomas Write Rule

is optimal under all cost factors, and Method 2 (basic T/O for

rw synchronization, TWR for ww) dominates all methods that use

basic T/O for rw synchronization.

Next, consider methods that use multi-version T/O for rw

synchronization. No method in this class dominates the others;

see figure 6.17. Method 7, however, (multi-version T/O for all

synchronization) is optimal under all cost factors except

computation overhead. As a practical matter, the extra

computation overhead of Method 7 over Methods 5 and 8 is

probably not significant. All methods require multiple versions

I__ _ _ _ _ _ _ _ _ _

Distributed Database Concurrency Control Page -191-
Performance of Concurrency Control Methods Section 6

Relative Performance of T/b Methods
Using Basic T/b for rw Synchronization Figure 6.16

Commnunication Local Processing Restart Blocking
Overhead Overhead Behavior Behavior

baT/coT baT! mVT baT/baT baT/coT

[T/0 4 CT/O 3j [T/O 1] LT/O 4]

baT/baT, twr, mvT baT/baT, twr, coT baT/twr, nivT, coT' baT/baT, twr, mvTI
£T/O 1-31 jT/O 1, 2, 4j £T/O 2-4] £T/O 1-3]

Page -192- Distributed Database Concurrenicy Control
Section 6 Performance of Concurrency Control Methods

Relative Performance of T/b Methods
Using Multi-Version T/b
for rw Synchronization Figure 6.17

Commnunication Local Processing Restart Blocking
Overhead Overhead Behavior Behavior

mvT/coT mvT/mvT mvT/baT mvT/coT
1.T/0 8] ITO7 T/O 5] LT/O 8]

niv7,baT, mvT mvT/baT, coT mvT/mvT, coT mvT/baT, mvT
- T/O 5, 7] £LT/O 5, 8] ~ T/O 7, 8] [T/O 5, 72

Distributed Database Concurrency Control Page -193-
Performance of Concurrency Control Methods Section 6

of data items that have been recently updated. The difference

is that Method 7 requires multiple R-timestamps for data items

that have been recently read, while Methods 5 and 8 only require

a single R-timestamp for those data items. It is reasonable to

assume that if one can afford the overhead of multiple versions,

then one can also afford multiple R-timestamps. Thus, for

practical purposes it is reasonable-to claim that Method 7 is

best over all methods that use multi-version T/O for rw

synchronization.

Finally, consider methods that use conservative T/O for rw

synchronization. Again, no single method is dominant; see

figure 6.18. However, Method 10 (conservative T/O for rw

synchronization, TWR for ww) dominates all methods except Method

12 (conservative T/O for all synchronization). Consequently, we

identify both of these methods as dominant.

The performance of the dominant T/O methods is compared in

figure 6.19. Unlike the dominant 2PL methods, the performance

of dominant T/O methods varies widely over all cost factors.

This reflects the fundamental difference in "synchronization

philosophy" between conservative and non-conservative

techniques: conservative T/O is designed to avoid restarts at

all cost, while non-conservative techniques are willing to

accept restarts as a a normal mode of operation. The wide

variation of dominant T/O methods is an important source of

Page -194- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

Relative Performance of T/b methods
Using Conservative T/b
for rw Synchronization Figure 6.18

Comiunication Local Processing Restart Blocking
Overhead Overhead Behavior Behavior

coT/baT, twr coT/mvT coT/baT coT/coT
nivT, coT LT/O 11] IT/O 93 LT/O 121

[T/o 9-12J

coT/baT, twr co/tr, mvT, coT coT/baT, twr, mvT
f£T/O 9, 103 r.T/O 10-12J LTIO 9-11]

coT/coT
L T/O 123

--

_ _ _ _ _ _ _AL-

Distributed Database Concurrency Control Page -195-
Performance of Concurrency Control Methods Section 6

--
Relative Performance
of Dominant T/O Methods Figure 6.19

Comunication Local Processing Restart Blocking

Overhead Overhead Behavior Behavior

coT/twr, coT mvT/mvT baT/twr coT/coT

_/O 10, 12) .T/O 73 [T/O 23 .T/O 121

baT/twr baT/twr mvT/nvT coT/twr

mvT/mvT IT/O 2] LT/O 7] [T/O 10)

[T/O 2,7]2

coT/twr coT/twr, coT baT/twr
£T/O 103 r-T/O 10, 12 [T/O 2]

coT/coT nWT/mvT

ET/O 121 ET/O 7]

Page -196- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

flexibility in the selection of concurrency control methods. We

return to this point in Section 6.7.

6.6.3 Dominant Mixed Methods

The description of mixed methods in Section 5 is not detailed

enough to support analyses similar to Sections 6.6.1 and 6.6.2.

However, we shall describe three mixed methods which out-perform

dominant 2PL and T/O methods in certain system contexts. These

are Methods 2, 6, and 10 of Sections 5.3.2.

Mixed Method 2 uses basic 2PL for rw synchronization and TWR for

ww synchronization. This method has the same communication

requirements as 2PL Method 2 (basic 2PL for rw, primary copy 2PL

for ww), but better restart and blocking behavior, because TWR

never induces restarts or blocking. On the negative side, the

mixed method has higher local processing overhead; its local

processing overhead is comparable to T/O methods that use basic

T/O for rw synchronization (e.g. T/O Method 2). One can think

of Mixed Method 2 as a compromise between 2PL Method 2 and T/O

Method 2.

Mixed Method 6 uses primary copy 2PL for rw synchronization and

TWR for ww synchronization. This method has the same

communication requirements as 2PL Method 6 (primary copy 2PL for

Distributed Database Concurrency Control Page -197-
Performance of Concurrency Control Methods Section 6

all synchronization), but better restart and blocking behavior.

Mixed Method 6 has more local processing overhead than 2PL

Method 6, but less overhead than Mixed Method 2 (because it only

requires R-timestamp on primary copies of logical data items).

Mixed Method 10 uses centralized 2PL for rw synchronization and

TWR for ww synchronization. This method has the same

communication requirements as 2PL Methods 10 and 12 (centralized

2PL for rw, primary copy 2PL or centralized 2PL for ww), but

better restart and blocking behavior. Its local processing

overhead is similar to Mixed Method 6.

By using the Thomas Write Rule for ww synchronization, each

mixed method attains better restart and blocking behavior than

the "corresponding" 2PL method. This improvement in restart and

blocking behavior is paid for by an increase in local processing

overhead. On the other hand, by using 2PL for rw

synchronization, the mixed methods attain better restart

behavior than T/O Method 2 (basic T/O for rw synchronization,

TWR for ww); this improvement is paid for by increased

communication and blocking costs. Similarly, the mixed methods

hdve better blocking behavior than T/O Method 10 (conservative

T/O for rw, TWR for ww synchronization) which is primarily paid

for by increased restarts.

Page -198- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

6.7 Designing a Concurrency Control Method

Section 6.6 has identified eleven dominant concurrency control

methods. The relative performance of these methods is

summarized in figure 6.20. Designing a concurrency control

method for a given systems and application'amounts to selecting

a dominant method whose performance is well-matched to the

application's demands. In addition, the dominant method may be

fine-tuned by incorporating refinements.

In this section we discuss the impact of system and application

factors on concurrency control performance. We present a

plausible design scenario for the selection of a concurrency

control method in certain stereotypical environments.

We focus on the issue of run-time conflicts. A run-time

conflict occurs when two or more concurrent transactions access

the same data item in conflicting modes. Run-time conflicts

endanger the correct operation of the system, because they can

cause non-serializable behavior. To safeguard system operation,

all concurrency control methods must incur some cost to ensure

that run-time conflicts are synchronized properly.

The severity of the concurrency control problem for an

application is largely determined by the rate of run-time

- ___----A --

Distributed Database Concurrency Cp- 11 Page -199-
Performance of Concurrency Contra 'Js Section 6

-------------- ------------------------
Relative Performance of DominanL methods Figure 6.25

Communication Overhead Local Processing Overhead

coT/twr, coT mvT/mvT
[T/O 10, 12 . LT/O 71

(under low load)/
ce2/ce2

2PL 12]
(if A does not hold) baT, ba2/twr

r T/O 2]
pc2/pc2, twr ce2/pc2, twr L mxd 21

2PL 6]r 2P1 101C mxd 6 mxd 10
(if A does not hold) pc2. ce2/twr ba/PC2

t mxd 6, 10] [2PL 2)

ba2fpc2, twrIV

coT/twr pc2/pc2

S.T/O 10] ce2/pc2, ce2
ce2/pc2 ce2, twr 2PL 6 10, 12

LmxdP 10-jo~
(if A does hold) coT/coT

r T/O 12]

coT/twr, coT
[T/O 10, 12]

(under high load)

Blocking Behavior

baT/twr
mvT/mvT

.T/O 2, 7]
coT/coT12

Restart Behavior ba2/pc2
pcE/pc2

ba2/c2 ce2/pc2, ce2. coT/twr
pc2/pc2 L2PL 2, 6, 10, 12] ET/O 103

ce2/pc2, ce2 baT/twr
C2P1. 2, 6, 10, 12] 1T/0 27 1,p2 e/w• haW, pc2, ce2/twr

t4, L mxd 2, 6, 10]
ba2, pc2, ce2/twr mvT/mvT

mxd 2, 6, 101 [T/O 73 baT/twr
T/O 23

coT/twr, coT mvT/mvT

LT/O 10, 12] ET/O 7K

Page -200- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

conflicts. It the rate of run-time conflicts is high,

concurrency control performance will inevitably be poor;

following (KRI we call this a pessimistic situation.

Conversely, if the rate of run-time conflicts is low,

concurrency pontrol performance can be quite good; we call this

an oeptimistic situation.

The first step in our design scenario is to determine whether

the application is optimistic, pessimistic, or in between. This

step will not be discussed in this report. Sections 6.7.1 and

6.7.2 discuss the remainder of the design problem for

pessimistic and optimistic applications respectively. The

Oin-between" situation is considered briefly in Section 6.7.3.

6.7.1 Handling Pessimism

in a pessimistic situation one should expect many run-time

conflicts to occur. It is important, therefore, to keep the

cost of handling each conflict as low as possible. Transaction

restart is generally the most expensive way of responding to a

run-time conflict, and so the primary goal in a pessimistic

situation is to minimize the number of restarts and the cost per

restart. Other cost factors should be considered secondarily.

mLj

Distributed Database Concurrency Control Page -201-
Performance of Concurrency Control Methods Section 6

From figure 6.20 we see that optimal restart behavior is

exhibited by T/O Methods 10 and 12. These methods use

conservative T/O for rw synchronization and the Thomas Write

Rule or conservative T/O for ww synchronization. These methods

induce no restarts. On the negative side, these methods have

bad blocking behavior and high communication overhead (under low

load). These negative aspects can be mitigated to some extent

by classes and conflict _raEhanajysis. Also, since load is

likely to be hih in pessimistic applications, the communication

overhead of these methods may be moderate anyway.

The choice between T/O Methods 10 and 12 involves a trade-off

between local processing overhead and blocking. Method 10 has

higher local processing overhead because it requires

W-timiestamps for recently updated data items; Method 12 has

higher blocking because it requires that dm-writes be processed

in timestamp order. In a pessimistic application, the

computation overhead of Method 10 is almost certainly worth what

it costs and we conclude that Method 10 is preferable to Method

12 in these situations.

For some applications the blocking and communication overhead of

Method 10 may be intolerable even if classes and conflict graph

analysis are used. For these applications, the designer should

consider T/O Method 7 or Mixed Methods 2, 6, and 10. See figure

6.20.

Page -202- Distributed Database Concurrency Control
Section 6 .Performance of Concurrency Control Methods

T/O Method 7 uses multi-version T/Ofor all synchronization.

This method induces a restart if a DM receives a pre-commit with

timestamp TS after a conflicting dm-read with larger timestamp

TS'. In a pessimistic situation, one expects to receive many

conflicting pre-commits and dm-reads from concurrent

transactions. These conflicting messages will tend to have

nearly equal timestamps (assuming clocks at different TMs are

reasonably well-synchronized). To avoid'excessive restarts we

should "stack the deck" by transmitting pre-commits as early as

possible and dm-reads as late as possible. In other words, for

Method 7 to work well in a pessimistic application we should

predeclare writesets but not readsets. As a fringe benefit,

predeclaration will also tend to reduce the cost per restart.

Mixed Method 2, 6, and 10 use various 2PL techniques for rw

synchronization and the Thomas Write Rule for ww

synchronization. Because 2PL is used, a deadlock resolution

technique must also be specified. The choice of deadlock

resolution technique strongly impacts the restart behavior of

the method. To minimize the number of restarts and cost per

restart deadlock detection should be used instead of prevention.

Mixed Methods 2 and 6 use non-centralized 2PL techniques for rw

synchronization. For these methods, deadlock detection incurs

communication overhead since waits-for information must be

transmitted to a centralized deadlock detector periodically. A

Distributed Database Concurrency Control Page -203-
Performance of Concurrency Control Methods Section 6

possibly more damaging drawback is that the deadlock detection

algorithm cannot be executed continuously -- since waits-for

information is only received periodically, the algorithm can

only be run periodically. On average, a deadlock will lie

undetected for one-half the interval between executions of the

deadlock detector. During this interval, all transactions

involved in the deadlock are blocked. This phenomenon may

seriously degrade concurrency control performance since many

deadlocks are likely to arise in pessimistic situations.

To reduce the blocking cost of deadlock detection, waits-for

information may be transmitted more frequently. However, this

increases communication overhead.

Mixed Method 10 uses centralized 2PL for rw synchronization.

For this method, deadlock detection incurs no extra

communication overhead. Also, the deadlock detector may be

executed continuously at low cost.

As a practical matter we believe that deadlock detection

overhead will prove excessive in pessimistic applications for

non-centralized 2PL techniques. In our opinion, the only viable

2PL technique for pessimistic applications is centralized 2PL.

To use 2PL for a pessimistic application, the only choices are

Mixed Method 10 and 2PL Method 12 (centralized 2PL for all

synchronization). Notice that if these methods are selected,

p.rdeclaration of readsets and writesets is necessary to avoid

excessive communication cost.

4 - -- -.........___________________I__II___II___,__t

-1

Page -204- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

The choice between Mixed Method 10 and 2PL Method 12 is a

tradeoff between the extra computation overhead of the mixed

method vs. its increased concurrency. The mixed method requires

R- and W-timestamps in addition to read- and write-locks , but

permits concurrent transactions to update the same data items

without restarts or blocking. In pessimistic situations, the

overhead of timestamps is probably worth what it costs. We

conclude that Mixed Method 10 is probably better than 2PL Method

12 in those situations.

The analysis of this section may be summarized as follows.

(i) T/O Method 10 (conservative T/O for rw synchronization,

TWR for ww) is probably the best method for pessimistic

applications. Classes and possibly conflict graph analysis are

useful refinements.

(ii) If the blocking and communication overhead of T/O

Method 10 is not acceptable, there are two feasible

alternatives: T/O Method 7 (multi-version T/O for all

synchronization) and Mixed Method 10 (centralized 2PL for rw

with TWR for ww synchronization).

(iii) Both alternatives require predeclaration. T/O Method

7 requires predeclaration of writesets but not readsets; Mixed

Method 10 requires predeclaration of readsets and writesets.

Predeclaration is only feasible if the database system can

accurately estimate the data requirements of transactions before

tU ' execute.

Distributed Database Concurrency Control Page -205-
Performance of Concurrency Control Methods Section 6

(iv) If T/O Method 7 and Mixed Method 10 are both feasible,

the choice between them depends on two additional factors both

of which entail quantitative analysis: (1) the relative restart

behavior of the methods; and (2) the tradeoff between the extra

communication overhead of Mixed Method 10 vs. the extra local

processing overhead of T/O Method 7.

6.7.2 Handling Optimism

Concurrency control is much simpler for optimistic applications,

because few conflicts are expected.

All synchronization techniques only induce restarts in response

to conflicts, and all techniques except conservative T/O only

induce blocking in response to conflicts. Since few conflicts

are expected in optimistic situations, all techniques except

conservative T/O can be expected to exhibit good restart and

blocking behavior. Conservative T/O induces blocking as a

normal mode of operation whether or not conflicts are present.

For this reason, we deem conservative T/O to be infeasible in

optimistic situations. The relative performance of all other

techniques depends only on communication and local processing

overhead.

Page -206- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

The feasible T/O methods are Method 2 (basic T/O with TWR) and

Method 7 (multi-version T/O for all synchronization). Both of

these methods have no communication overhead, but Method 2 has

less computation overhead; see figure 6.20. This means that T/O

Method 2 dominates T/O Method 7 for optimistic applications.

All 2PL methods (i.e., Methods 2, 6, 10, 12) are feasible for

optimistic applications. The choice among these methods depends

principally on two factors: (1) whether predeclaration is in

effect; and (2) the relative importance of communication vs.

computation.

If predeclaration is not in effect, centralized 2PL incurs

excessive communication overhead. This eliminates Methods 10

and 12 from consideration. Method 2 (basic 2PL for rw, primary

copy 2PL for ww) has more computation overhead than Method 7

(primary copy 2PL for all synchronization), since Method 2 is

forced to set write-locks on all copies of redundant data. on

the other hand, Method 2 has less communication overhead than

Method 7, because Method 7 is forced to read primary copies of

data items. The choice between these methods is not clear-cut

and will probably vary from application to application.

If predeclaration is in effect, Methods 10 and 12 (centralized

2PL for rw , primary copy 2PL or centralized 2PL for ww) should

also be considered. There are two cases to analyze.

- - ____________________________________

Distributed Database Concurrency Control Page -207-
Performance of Concurrency Control Methods Section 6

1. If condition A of Section 6.2.4 also holds -- i.e., if

the average transaction reads data from more than two

DMs at which it does not write -- then Method 12

dominates the other choices insofar as communication

and computation are concerned; see figure 6.20. For

this case, Method 12 (centralized 2PL for all

synchronization) is optimal.

2. If condition A does not hold, the choice of methods

again involves a tradeoff between the extra locks

required by Method 2 vs. the extra messages required by

Methods 6, 10, and 12.

The choice of deadlock resolution technique is not critical in

optimistic applications because few conflicts, and even fewer

deadlocks are expected. The designer is free to select whatever

technique is easiest to implement in his system.

Mixed methods are also feasible for optimistic applications.

However these methods are dominated by 2PL methods insofar as

communication and computation overhead are concerned; see figure

6.20. Therefore, mixed methods should probably not be

considered in optimist situations.

The analysis of this section may be summarized as follows.

(i) T/O Method 8 (basic T/O for rw, with TWR for ww) is the

best T/O method for optimistic applications.

Page -208- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

(ii) All dominant 2PL methods are reasonable choices under

one or more application scenarios.

(iii) The choice among 2PL methods and between these

methods and T/O Method 2 involves a tradeoff between

communication and computation overhead. The best method will

probably be different for different applications, although all

of these methods will probably perform well.

(iv) Mixed methods are not appropriate for optimistic

applications.

6.7.3 Handling In-Between Applications

Optimism and pessimism are end-points of a spectrum.

Undoubtedly, most applications will lie somewhere in the middle

of this spectrum. For these applications all cost factors have

a potentially important impact on concurrency control

performance. In the absence of quantitative performance data,

there is little more to be said.

Distributed Database Concurrency Control Page -209-
Performance of Concurrency Control Methods Section 6

6.8 Review of Past Work

The state-of-the-art in performance analysis of distributed

concurrency control algorithms is represented by two recent PhD

theses [G-M, Ries]. Each author compared the performance of a

few algorithms under limited operating cond'itions.

Garcia-Molina's Analy is

Garcia-Molina compared several variants of centralized 2PL

(i.e., 2PL Method 12) to two distributed algorithms, namely the

Majority Consensus Algorithm of [Thomas 1,2] and The Ring

Algorithm of [Ellis]. The Thomas and Ellis algorithms do not

correspond to any of our methods. We chose not to include these

algorithms in our framework because, as we explain in the

Appendix, these algorithms are inherently inefficient. The

analysis carried out by Garcia-Molina in [G-M 2] supports this

conclusion; the author concluded centralized 2PL out-performs

the [Ellis] and [Thomas] algorithms under all tested conditions.

The analysis in [G-M 2] depends upon several restrictive

assumptions.

(i) Predeclaration of readsets and writesets is assumed.

Page -210- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

(ii) It is assumed that the readset of a transaction always

subsumes its writeset; i.e., a transaction cannot write into a

logical data item X unless it also reads X. This assumption

qualitatively reduces the complexity of the concurrency control

problem [BSWI.

(iii) A fully redundant database is assumed -- this means

that every DM is assumed to contain a copy of every logical data

item in the database. A number of the refinements analyzed by

Garcia-Molina cannot be implemented without this assumption.

(iv) Very small readsets were assumed -- much of the

analysis considered readsets of 5 data items.

(v) Last, but not least, the combinations of operating

parameters considered in the analysis were such that run-time

conflicts almost never occurred. In other words, the analysis

was limited to optimistic situations.

Ries's Analysis

The analysis in [Ries 1] compares two variations of centralized

2PL (i.e., 2PL Method 12) to two variations of distributed 2PL

(i.e., 2PL Method 1). For all variations, pEedeclaration is

assumed. For the centralized 2PL algorithms, pre-orderin of

resources is also assumed; this is not assumed for the

distributed 2PL algorithms. The two centralized algorithms

differ in the following respect: in variation 1, transactions

are blocked if they request unavailable locks, while in

Distributed Database Concurrency Control Page -211-
Performance of Concurrency Control Methods Section 6

variation 2 they are restarted. The two distributed algorithms

differ in their leadlock resolution scheme: variation 1 uses

the Wait-Die deadlock prevention technique (see Section 4.17)

while variation 2 uses centralized deadlock detection.

The operating conditions considered by [Ries 1] were such that

run-time conflicts rarely occurred. Indeed, no deadlocks ever

arose in the study. Thus, Ries's analysis, like

Garcia-Molina's, limited its attention to optimistic situations.

In addition, transactions tended to read and write data at the

same sites. This means that condition A of Section 6.2.4 tended

not to hold under the operating conditions that were considered.

The main result of [Ries 1] is that all four concurrency control

algorithms exhibit similar behavior. No algorithm is clearly

better than the others, and the differences between algorithms

are slight under almost all operating conditions. This null

result lends support to our analysis of optimistic situation in

Section 6.7.2; our qualitative analysis indicated that in

optimistic situations where condition A of Section 6.2.2 does

not hold, centralized 2PL and distributed 2PL* are both feasible

and neither dominates the other. It seems probable to us that

any variations in performance observed by Ries were caused more

by differences in deadlock resolution technique than by

differences in principal method.

Page -212- Distributed Database Concurrency Control
Section 6 Performance of Concurrency Control Methods

The work of Garcia-Moline and Ries are important first steps in

concurrency control performance analysis. This work emphasizes

the difficultly (perhaps futility) of attempting such analysis

without first structuring the space of potential solutions to

the distributed concurrency control problem.

*The distributed 2PL method considered in Section 6.7.2 is
Method 2 whereas Ries considered Method 1. The
performance of these methods only differs with respect to
restart behavior; see figure 6.12. Restart behavior is
not important in optimistic situations.

... - - .

Distributed Database Concurrency Control Page -213-
State-Of-The-Art and Directions for Further Work Section 7

7. State-Of-The-Art and Directions for Further Work

The long range goal of research on distributed database

concurrency control is to develop a methodology for designing

good concurrency control methods for a given system environment

and a given class of applications. As a first step toward this

goal, we have studied the state-of-the-art of distributed

database concurrency control and produced an integrated overview

of that subject. In this section, we summarize the findings of

our study, and outline recommendations for future research.

7.1 Summary

We set the stage for our study of distributed concurrency

control in Section 2. That section presented a model of

transaction processing in a distributed DBMS emphasizing the

essential inter-site interactions needed to process users'

transactions. This model provided a common framework for

describing and analyzing concurrency control methods, a

framework that has been lacking in the literature.

In Section 3 we reviewed the mathematical theory of concurrency

control. We formalized the principal correctness criterion for

Page -214- Distributed Database Concurrency Control
Section 7 State-Of-The-Art and Directions for Further Work

a concurrency control method -- namely serializability. And we

showed how the overall problem of attaining serializability can

be decomposed into two sub-problems -- read-write and

write-write synchronization. This decomposition is the

cornerstone of our paradigm for the design and analysis of

concurrency control methods.

Section 4 exploited this paradigm to examine fundamental

read-write and write-write synchronization techniques outside

the context of any specific conc icy control method. We

considered virtually all known synchronization techniques and

showed that these techniques can be understood as variations of

two basic techniques -- two-phase locking (2PL) and timestamp

ordering (T/O). This consolidation of the state-of-the-art was

possible in large part because of the paradigm for concurrency

control introduced in Section 3 and the common transaction

processing model introduced in Section 2.

In Section 5 we studied the space of concurrency control methods

that can be constructed from the techniques of Section 4. We

found this space to be enormous: there are thousands of ways of

icombining the synchronization techniques of Section 4 into

complete concurrency control methods. However, we identified 48

of these methods as princiR2al_m.thods. Most of these principal

methods have not been described in the literature previously,

and several of these new methods have interesting performance

characteristics.

Distributed Database Concurrency Control Page -215-
State-Of-The-Art and Directions for Further Work Section 7

Section 6 was devoted to performance analysis of principal

methods. We described the four main performance measures for

concurrency control methods -- communication overhead, local

processing overhead, transaction restarts, and transaction

blocking. We analyzed the major synchronization techniques and

the principal concurrency control methods relative to each

performance measure in qualitative terms. We showed that no

method had optimal performance under all'four measures, which

means that no method can be expected to perform optimally for

all system environments and applications. However, we

identified 11 methods as dominant methods -- for any given

system and application we believe that one of these 11 dominant

methods will be optimal. In addition, we suggested a design

scenario for choosing among dominant methods for certain kinds

of stereotypical applications.

Finally, in the Appendix we discussed three methods that have

appeared in the literature but do not fit into the framework of

Sections 4 and 5. While these methods are intellectually

impressive (and, in some cases, famous), none is of practical

significance in a distributed database environment.

Briefly, then, the state-of-the-art in distributed database

concurrency control is as follows.

.. - . - - -.-- ,- - - .- - - --..-- ---. '...

Page -216- Distributed Database Concurrency Control
Section 7 State-Of-The-Art and Directions for Further Work

1. a large number of correct methods for distributed

database concurrency control are known;

2. many important characteristics of system environments

and applications have been isolated;

3. the relative performance of concurrency control methods

has been qualitatively analyzed for some combinations

of system and application characteristics.

Lacking empirical test data, our knowledge of concurrency

control performance is necessarily qualitative. Even though we

cannot predict how much better one concurrency control method is

than another, this qualitative knowledge is nonetheless very

important. The strong demand for distributed database systems

makes their development inevitable, however little we may know

about the performance of-distributed concurrency control. Our

qualitative understanding can help considerably in the design of

such systems, by providing a structured range of alternatives

from which to select concurrency control methods and some

intuition as to which methods are best. Thus, the first tools

for thought about the design of distributed concurrency control

methods are in place.

.. ., 1 s=. 1

Distributed Database Concurrency Control Page -217-
State-Of-The-Art and Directions for Further Work Section 7

7.2 Recommendations

We recommend that the next stage of reserch expand both our

qualitative and quantitative knowledge of distributed database

concurrency control, with an eye toward assisting the

distributed DBMS designer in the seleftion of a concurrency

control method. Specifically, we recommend that aspects of

distributed data management that are related to and affect the

performance of concurrency control be investigated, especially

distributed reliabil~iy and distributed database design. In

addition, given the large number of alternative concurrency

control methods, it is appropriate that future research be

directed toward pruning the range of choices to simplify the

selection of best methods. To begin the pruning process, we

recommend that basic performance dat:a on concurrency control

methods for particular applications and system environments be

obtained. We discuss each of these problem areas below.

A,-

p - -

Page -218- Distributed Database Concurrency Control
Section 7 State-Of-The-Art and Directions for Further Work

7.2.1 Reliability

The performance of aoncurrency control methods is influenced by

reliability consideraticns for two reasons. First, the

communication requigements of a reliability protocol can affect

the communication reguirement of a concurrency contol method.

Two-phase commit is an example of this effect. Second,

different concurrency control methods may be susceptible to

different kinds of failures and may need different types of

algorithms to make them reliable, When reliability is an

important design goal, we must include the cost of making a

concurrency control method reliable when evaluating the method's

performance. Overall, reliability issues are intimately related

to, but less well understood than, concurrency control methods

and should be investigated more thoroughly.

7.2.2 Distributed Database Design

The performance of distributed concurrency control nethods is

likely to be sensitive to the design of a distributed database.

The number of sites over which the database is spread and the

number of redundant copies that aie maintained will both

Distributed Database Concurrency Control Page -219-
State-Of-The-Art and Directions for Further Work Section 7

influence, and be influenced by, the selection of a concurrency

control method. Research on distributed database design has

concentrated on query processing issues, almost totally ignoring

concurrency control factors [RG 2]. We therefo:e recommend that

the relationship between distributed database design and

distributed database concurrency control be explored.

7.2.3 Basic Performance Data

To obtain basic performance data, application and system

characteristics must be expressed in quantifiable parameters.

It must be possible to estimate these parameters given a

rudimentary description of a system and an application, since

that is the kind of description typically available when a

concturrency control method must be selected.

Given this parameterization, performance data should be obtained

to validate and expand the assumptions and conclusions presented

in Section 6. To simplify the analysis, synchronization

techniques should be examined in isolation, outside of a system

environment. The goal of this analysis should be two-fold:

first, to determine the relative performance of synchronization

techniques for a wide range of system and application behavior;

and second, to determine which of the four major performance

factors -- local processing, blocking, restarts, and

Page -220- Distributed Database Concurrency Control
Section 7 State-Of-The-Art and Directions for Further Work

communication -- ate most critical in ditferent system and

applications environments. Both types of data will further

structure the problem of selecting best concurrency control

methods.

We also recommend that the importance of concurrency control

performance in a distributed DBMS be studied, to determine when

concurrency control is a bottleneck. We expect that for some

systems and applications, concurrency control induces an

insignificant run-time cost. In such cases, the best

concurrency control method may be the one that is easiest to

implement.

7.2.4 Final Remarks

The research we have recommended will yield fundamental data

regarding the performance of concurrency control methods, and

will explore the effects of other aspects of distributed

database management on concurrency control performance. Early

results on these problems may well suggest the direction and

approach to subsequent research. Until our understanding of

these problems is deepened, we believe it inappropriate to

perform detail analyses of specific methods.

Distributed Database Concurrency Control Page -221-
State-Of-The-Art and Directions for Further Work Section 7

The basic investigations we have proposed will, in the short

run, assist in the design of concurrency control methods for

practical systems and, in the longer term, help develop a

comprehensive methodology for concurrency control design and

analysis.

* --- _ _ _-.- -

Page -222- Distributed Database Concurrency Control
Section 7 State-Of-The-Art and Directions for Further Work

Ackno wledemen ts

This study reflects accumulated discussions with many colleagues
over several years. In this regard, we would especially like to
thank Marco Casanova, Dave Shipman, Jim Rothnie, and Dushan
Badal. We also greatly appreciate the assistance of John Smith
who, as project manager, served both as our chief sounding board
and critical reviewer for this document.

We also gratefully acknowledge the tireless dedication of Debbie
Huebner who typed, editted, and text-processed this manuscript.

Distributed Database Concurrency Control Page -223-
Other Concurrency Control Methods Appendix A

A. Other Concurrency Control Methods

In this appendix we describe three concurrency control methods

that do not fit into the framework of Sections 4 and 5. These

are the certifier methods of [Badal 21 and [Cassanova], the

majority consensus aloorithm of [Thomas 1,2), and the ring

algorithm of [Ellis]. We shall argue that none of these methods

are practical in distributed database environments. The

certifier methods have been invented fairly recently and look

promising for centralized database system. However, as we will

describe, severe technical problems must be overcome before

these methods can be extended correctly to distributed systems.

The [Thomas] and [Ellis] algorithms, by contrast, are among the

earliest algorithms proposed for distributed database

concurrency control. These algorithms introduced several
I

important techniques into the field, but as we will see, they

have been surpassed by recent developments.

Page -224- Distributed Database Concurrency Control
Other Concurrency Control Methods Appendix A

A.1 Certifiers

A.1.1 The Certification Approach

In the certification approach, dm-reads and pre-commits are

processed by DMs first-come-first-served, with no

synchronization whatsoever. DMs do maintain summary information

about rw and ww conflicts, which they update every time an

operation is processed. However, dm-read and pre-commits are

never blocked or rejected based on the discovery of such a

conflict.

Synchronization occurs at the time a transaction attempts to

terminate. When a transaction, T, issues its END operation, the

DBMS decides whether or not to certify and thereby commit T.

To understand how this decision is made, we must distinguish

between "total" and "committed" executions. A total execution

of transactions includes the execution of all operations

processed by the system up to a particular moment. The

committed execution is the portion of the total execution that

only includes dm-reads and dm-writes processed on behalf of

Distributed Database Concurrency Control Page -225-
Other Concurrency Control Methods Appendix A

committed transactions. That is, the committed execution is the

total execution that would result from aborting all active

transactions (and not restarting them).

When T issues its END operation, the system tests whether the

committed execution augmented by the execution of T is

serializable. That is, it tests whether after committing T the

resulting committed execution would still be serializable. If

the answer is "yes", T is committed; otherwise T is restarted.

There are two properties of certification that distinguish it

from other approaches. First, synchronization is accomplished

entirely by restarts, never by blocking. And second, the

decision to restart or not is made after the transaction has

finished executing. None of the concurrency control methods we

discussed in Sections 4 and 5 satisfy both these properties.

The rationale for using certification is based on an optimistic

attitude regarding run-time conflicts. The argument is that if

very few run-time conflicts are expected, we might as well

assume that most executions are serializable. By processing

dm-reads and pre-commits without synchronization, the

concurrency control method never delays a transaction while it

is being processed. A (hopefully fast) certification test when

the transaction terminates is all that is required. Assuming

optimistic transaction behavior, we expect that the test will

usually result in committing the transaction, so there are very

Page -226- Distributed Database Concurrency Control
Other Concurrency Control Methods Appendix A

few restarts. Therefore, certification simultaneously avoids

blocking and restarts in optimistic situations.

A certification concurrency control method must include a

summarization algorithm for storing information about dm-reads

and pre-commits when they are processed and a certification

algorithm for using that information to certify transactions

when they terminate. The main problem in the summarization

algorithm is avoiding the need to store information about

transactions that have already been certified. The main problem

in the certification algorithm is obtaining a consistent copy of

the summary information. To obtain a consistent copy of the

summary information, it ' often necessary for the certification

algorithm perform some synchronization of its own; the cost of

that synchronization must- be included in the cost of the entire

method.

A.1.2 Certification Using the -> Relation

One certification method is to construct the -> relation as

dm-reads and pre-commits are processed. To certify a

transaction, the system checks that the -> relation has no

cycles [Badal 2] [Cassanova].

r!.i

Distributed Database Concurrency Control Page -227-
Other Concurrency Control Methods Appendix A

To construct the -> relation, each site remembers the most

recent transaction that read or wrote each data item. Suppose

transactions Ti and Tj were the last transactions to

(respectively) read and write data item x. If transaction Tk

now issues a dm-read(x), Tj -> Tk is added to the summary

information for the site and Tk replaces Ti as the last

transaction to have read X. Similarly, if Tk issues a

pre-commit(x), Ti -> Tk and Tj -> Tk are added to the summary

and Tk replaces Tj ,s the last transaction to have written x.

Thus, pieces of the -> relation are distributed among the sites,

reflecting run-time conflicts at each site.

To certify a transaction, the system must check that the

transaction does not lie on a cycle in -> (see Theorem 1', in

Section 3). This is sufficient to guarantee serializability.

There are two problems with this approach. First, it is in

general not correct to delete a certified transaction from ->

even if all of its updates have been committed. For example, if

Ti -> Tj and Ti is active but Tj is committed, it is still

possible for T. -> Ti to develop; deleting Tj would then cause

the cycle Ti -> Tj-> Ti to go unnoticed when Ti is being

certified. However, it is obviously not feasible to allow -> to

grow indefinitely. This problem is solved in [Casanova] by a

method of encoding information about committed transactions in

space proportional to the number of active transactions.

Page -228- Distributed Database Concurrency Control
Other Concurrency Control Methods Appendix A

A second problem is that all sites must be checked to certify

any transaction. Even sites at which the transaction never

accessed data must participate in the cycle checking of ->. For

example, suppose we want to certify transaction T. T might be

involved in a cycle T -> T1 T 2 ->...-> Tnl -> Tn -> Tl, where

each conflict Tk -> Tk+l occurred at a different site.

Possibly, T only accessed data at one site, yet the -> relation

must be examined at n sites to certify T. This problem is

currently unsolved, as far as we know. That is, any correct

certifier based on this approach of checking cycles in -> must

access the -> relation at all sites to certify each and every

transaction. Until this problem is solved, we judge the

certification approach to be impractical in a distributed

environment.

A.2 Thomas' Majority Consensus Algorithm

Distributed Database Concurrency Control Page -229-
Other Concurrency Control Methods Appendix A

A.2.1 The Algorithm

One of the first published algorithms for distributed

concurrency control is. a certification method described in

[Thomas 1,21. Thomas introduced several important

synchronization techniques in that algorithm including the

Thomas Write Rule (see Section 4.2.3), majority voting (see

Section 4.1.1), and certification (see Appendix. A.1). These

techniques are valuable when considered in isolation. However,

we will argue that the overall Thomas algorithm is not suitable

for distributed databases. We begin by describing the algorithm

and then comment on its application to distributed databases.

Thomas' algorithm assumes a fully redundant database. That is,

each logical data item is stored at every site. Also, each copy

carries the timestamp of the last transaction that wrote into

it.

Transactions execute in two-phases. In the first phase, each

transaction executes locally at one site called the

transaction's home site. Since the database is fully redundant,

any site can serve as the home site for any transaction. The

transaction is assigned a unique timestamp when it begins

executing. During execution, it keeps a record of the timestamp

Page -230- Distributed Database Concurrency Control
Other Concurrency Control Methods Appendix A

of each data item it reads. When the transaction executes a

write on a data item, the system processes the write by

recording the new value in an update list. Importantly, each

transaction is required to read a copy of a data item before it

writes into that data item. When the transaction terminates,

the system augments the update list with the list of data items

read by the transaction and the timestamps of those data items

at the time they were read. In addition; the timestamp of the

transaction itself is added to the update list. This completes

the first phase of execution.

In the second phase, the update list is sent to every site.

Each site (including the site that produced the update list)

votes on the update list. Intuitively speaking, to vote on an

update list, a site tries to certify the transaction that

produced the list. The site votes yes iff it can certify the

transaction. After a site votes yes on an update list, the

update list is said to be pending at that site. To cast the

vote, the site sends a message to the transaction's home site.

When the home site receives a majority of yes or no votes, it

informs all sites of the outcome of the vote. If a majority

voted yes, then all sites are required to commit the update,

which are then installed using the Thomas Write Rule. If a

majority voted no, all sites are told to discard the update, and

the transaction is restarted.

' p .: ' _ . .. -. . ._,__ _ _ _ _ _ _ _ _i n i n l nn_ _m u

Distributed Database Concurrency Control Page -231-
Other Concurrency Control Methods Appendix A

The rule that determines when a site may vote "yes' on a

transaction is pivotal to the correctness of the algorithm. To

vote on an update list, U, a site compares the timestamp of each

data item in the readset of U to the timestamp of that same data

item in the site's local database. If any data item has a

different timestamp in the database than in U, the site votes

no. If all data items satisfy the timestamp comparison, the

site compares the readset and writeset of U' to the readset and

writeset of each pending update list at that site. If there is

no rw conflict between U and any of the pending update lists,

the site votes yes. If there is an rw conflict between U and

one of those pending requests, the site votes pas (which

amounts to abstaining) if the timestamp of U is larger than the

timestamp of the pending update list with which it conflicts.

If there is an rw conflict and U's timestamp is smaller than the

timestamp of the pending update list with which it conflicts,

then it sets U aside on a wait queue and tries again to vote on

U as soon as the request with which U conflicts has either been

committed or aborted at that site.

The voting rule is essentially a certification procedure. By

making the timestamp comparison, a site is checking that the

readset was not written into since the transaction read that

readset. If the comparisons are satisfied, the situation is as

if the transaction had locked its readset at that site and held

the locks until the time it voted. So, the voting rule is

Page -232- Distributed Database Concurrency Control
Other Concurrency Control Methods Appendix A

guaranteeing rw synchronization with a certificat:on rule

approximating rw locking. (This fact is proved precisely in

[BSW] .)

The second part of the voting rule, in which U is checked for rw

conflicts against pending update lists, guarantees that

conflicting requests are not certified concurrently. An example

illustrates the problem. Suppose transaction T1 reads X and Y,

and writes Y, while transaction T2 reads X and Y, and writes X.

Suppose Ti and T2 execute at sites A and B respectively and X

and Y have timestamps of 0 at both sites. Assume that TI and T2

execute concurrently and produce update lists ready for voting

at about the same time. Notice that either T1 or T2 must be

restarted, since neither read the other's output; if they were

both committed the result would be non-serializable. However,

both Tl's and T2's update lists will (concurrently) satisfy the

timestamp comparison at both A and B. What stops tl.em from both

obtaining unanimous yes votes is the second part of the voting

rule. After a site votes on one of the transactions, it is

prevented from voting on the other transaction until the first

is no longer pending. The point of the example is that

conflicting transactions cannot be concurrently certified

without violating serializability.

With the second part of the voting rule, the algorithm behaves

as if the certification step were atomically executed at a

Distributed Database Concurrency Control Page -233-
Other Concurrency Control Methods Appendix A

primary site. If certification were centralized at a primary

site, the certification step at the primary site would serve the

same role as the majority decision in the voting case.

(We note, that this problem of concurrent certification exists

in the algorithms of A.1.2, too. This is yet another technical

difficulty with the certification approach in a distributed

environment.)

A.2.2 Correctness

No simple proof of the serializability of Thomas' algorithm has

ever been demonstrated, although Thomas provided a detailed

"plausibility" argument in- his paper [Thomas 2). The first part

of the voting rule can correctly be used in a centralized

concurrency control method since it implies 2PL [BSW]. A

centralized method based on this approach was proposed in [KR].

The second part of the voting rule guarantees that for every

pair of conflicting transactions that received a majority of yes

votes, all sites that voted yes on both transactions voted on

the two transactions in the same order. This makes the

certification step behave just as it would if it were

centralized, thereby avoiding the problem exemplified in the

previous paragraph.

' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~:- i f l., - , ,. ,,,

Page -234- Distributed Database Concurrency Control
Other Concurrency Control Methods Appendix A

A.2.3 Partially Redundant Databases

For the majority consensus algorithm to be useful in a

distributed database environment, the algorithm must be

generalized to operate correctly when the database is only

partially redundant. There is reason to doubt that such a

generalization can be accomplished without either serious

degradation of performance or a complete change in the set of

techniques that are used.

First, the majority consensus decision rule apparently must be

dropped. The voting algorithm fundamentally depends upon the

fact that all sites are performing exactly the same

certification test. In a partially redundant database, each

site would only be comparing the timestamps of those data items

stored at that site. Thus, the significance of the majority

vote would vanish.

If majority voting cannot be used to synchronize concurrent

certification tests, apparently some kind of mutual exclusion

mechanism must be used instead. The purpose of the mutual

exclusion mechanism would be to prevent the concurrent, and

therefore potentially incorrect, certification of two

conflicting transactions. Such a mutual exclusion mechanism

m' w u mi |:~ m m , - -... -° -

Distributed Database Concurrency Control Page -235-
Other Concurrency Control Methods Appendix A

woulO amount to locking. The use of locks for synchronizing the

certification step violates the spirit of Thomas' algorithm,

since a main goal of the algorithm was to avoid the need for

locking. However, it is worth examining such a locking

mechanism to see how certification can be correctly accomplished

in a partially redundant database.

To process a transaction T, a site produces an update list

exactly as in the fully redundant case. However, since the

database is partially redundant, it may be necessary to read

portions of T's readset from other sites. After T terminates,

its update list is sent to every site that contains part of T's

readset or writeset. To certify an update list, a site first

sets local locks on the readset and writeset. Then it compares

the vpdate list's timestamps to the database's timestamps, as in

the fully redundant case. If they are identical, it "votes" yes

otherwise, it "votes" no. A unanimous vote of yes is needed to

commit the updates. Local locks cannot be released until the

voting decision is completed.

While this version of Thomas' algorithm for partially redundant

data works correctly, its performance is inferior to standard

2PL. This algorithm requires that the same locks be set as in

2PL and the same deadlocks can arise. Yet the probability of

restart is higher than in 2PL, because even after all locks are

obtained the certification step can still vote no (which 2PL

never does).

Page -236- Distributed Database Concurrency Control
Other Concurrency Control Methods Appendix A

One can improve this algorithm by designating a primary copy of

each data item and only performing the timestamp comparison

against the primary copy. This is analogous to primary copy

2PL. However, for the same reasons as above, we would expect

primary copy 2PL to outperform this version of Thomas' algorithm

too.

We therefore must leave open the problem of producing an

efficient version of Thomas' algorithm for a partially redundant

database.

A.2.4 Performance

Even in the fully redundant case, the performance of the

majority consensus algorithm is not very good. First, repeating

the certification and conflict detection at each site is more

than what is needed to obtain serializability. A centralized

certifier would work just as well and would only require that

certification be performed at one site. Second, the algorithm

is quite prone to restarts when there are run-time conflicts,

since restarts are the only tactic available for synchronizing

transactions. (Other certification techniques have this problem

as well; see Appendix A.1.) Hence, the algorithm will only

perform well under the most optimistic circumstances. Finally,

even in optimistic situations, the analysis in [G-M 2] indicates

..

Distributed Database Concurrency Control Page -237-
Other Concurrency Control Methods Appendix A

that centralized 2PL outperforms the majority consensus

algorithm.

A.2.5 Reliability

Despite the performance problems of the majority consensus

algorithm, one can try to justify the algorithms on reliability

grounds. As long as a majority of sites are correctly running,

the algorithm runs smoothly. This means that there is no cost

in handling a site failure, insofar as the voting procedure is

concerned.

However, based on current knowledge, this justification is not

compelling for several reasons. First, although there is no

cost when a site fails, substantial effort may be required when

a site recovers. A centralized algorithm using back-up sites,

as in (AD], lacks the symmetry of Thomas' algorithm, but may

well be more efficient due to the simplicity of site recovery.

In addition, the majority consensus algorithm does not consider

the problem of atomic commitment and it is unclear how one would

integrate two-phase commit into the algorithm.

Overall, the reliability threats that are handled by the

majority consensus algorithm have not been explicitly listed,

and alternative solutions have not been analyzed. While voting

Page -238- Distributed Database Concurrency Control
Other Concurrency Control Methods Appendix A

is certainly an interesting technique for obtaining a measure of

reliability, the circumstances under which it is cost-effective

are unknown.

Distributed Database Concurrency Control Page -239-
Other Concurrency Control Methods Appendix A

A.3 Ellis' Ring Algorithm

Another early solution to the problem of distributed database

concurrency control is the ring algorithm [Ellis]. Ellis was

principally interested in a proof technique, called L-systes,

for proving the correctness of concurrent algorithms. He

developed his concurrency control method primarily as an example

to illustrate L system proofs, and never made claims as to its

performance. Because the algorithm was only intended to

illustrate mathematical techniques, Ellis imposed a number of

restrictions on the algorithm for mathematical convenience,

which happen to make it infeasible in practice. Nonetheless the

algorithm has received considerable attention in the literature,

and in the interest of completeness, we briefly discuss it.

Ellis' algorithm solves the distributed concurrency control

problem with the following restrictions:

1. The database must be fully redundant.

2. The communication medium must be configured as a ring,

so each site can only communicate with its successor on

the ring.

3. Each site-to-site communication link is pipelined.

Page -240- Distributed Database Concurrency Control
Other Concurrency Control Methods Appendix A

4. Each site can supervise no more than one active update

transaction at a time.

5. To update any copy of the database, a transaction must

first obtain a lock on the entire database at all

sites.

The effect of restriction 5 is to force all transactions to

execute serially; no concurrent processing is ever possible.

For this reason, the algorithm is fundamentally impractical.

To execute, an update transaction migrates arond the ring,

(essentially) obtaining a lock on the entire database at each

site. ,However, the lock conflict rules are nonstandard. A lock

request from a transaction that originated at site A conflicts

at site C with a lock held by a transaction that originated from

site B if B=C and either A=B or the priority of site A is less

than the priority of site B. The daisy chain comunication

induced by the ring combined with this locking rule produces a

deadlock-free algorithm that does not require deadlock detection

and never induces restarts. A detailed description of the

algorithm appears in [G-M].

There are several problems with this algorithm in a distributed

database environment. First, as mentioned above, it -forces

transactions to execute serially. Second, it only applies to a

fully redundant database. And third, the daisy chain

communication requires that each transaction obtain its lock at

Distributed Database Concurrency Control Page -241-
Other Concurrency Control Methods Appendix A

one site at a time, which causes communication delay to be (at

least) linearly proportional to the number of sites in the

system.

A modified version of Ellis' algorithm that mitigates the first

problem is proposed in [G-M 2]. Even with this improvement,

Garcia-Molina's performance analyzi. indicates that the ring

algorithm has inferior performance to centralized ZPL. And, of

course, the modified algorithm still suffers from the last two

problems.

N_

Page -242- Distributed Database Concurrency Control
3ther Concurrency Control Methods Appendix A

References

[AD]
Alsberg, P.A. and Day, J.D. "A Principle for Resilient
Sharing of Distributed Resources", Proc. 2nd Int.
Conference on Software Eng i neering, OctoBer 1976.

[ABDG1
Alsberg, P.A. Belford, G.G. Day, J.D. and Grapa, E.
"Multi-Copy Resiliency Techniques," Center for Advanced
Computation, AC Document No. 202, University of Illinois
at Urbana-Champaign, Urbana Illinois, May 1976.

[AHU]

Aho, A.V., Hopcroft, E., Ullman, J.D. "The Design and
Analysis of Computer Algorithms." Addison-Wesley
Publishing Co. (1975).

[Badal 11
Badal, D.Z. University of California at Los Angeles, Los
Angeles, California. "On Efficient Monitoring of Data
Base Aggertions -in Distributed Data Base Systems."
!Proc. 4th Berkeley Conference on Distributed Data
Manaement & Computer Networks. August 1979.

[Badal 2]
Badal, D. Z. "Correctness of Concurrency Control and
Implications in Distributed Databases", Proc. COMPSAC 79
Conf., Chicago, Nov. 1979.

[Badal 31
Badal, D. Z. "On the Degree of Concurrency Provided by
Concurrency Control Mechanisms for Distributed
Databases", Proc. the Intl. Symposium on Distributed
Databases, Versailes, France, -Ma~c D-toappearT-

(Badal 41
Badal, D. Z. "Integrity, Consistency and Concurrency in
Distributed Database Systems", (invited paper), Infotech
State of the Art Report on Distributed Databases,

[BPJ

A
4 ~ -. -

Distributed Database Concurrency Control Page -243-
Other Concurrency Control Methods Appendix A

Badal, D.Z.; and Popek, G.J. "A Proposal for
Distributed Concurrency Control for Partially Redundant
Distributed Data Base System," Proc. 3rd Berkeley
Workshop on Distributed Data Management and-Computer6 s 7 -I § 7 , 7p . 1 T

[BK7]
Bamino, J.S., C. Kaiser, and H. Zimmerman,
"Synchronization for Distributed Database Systems Using

a Single Broadcast Channel", Proc. First International
Conf. on Distributed Computin2__§ytem,, IEEE, N.Y., Oct.
1979, pp. 330-338.

[BSS]
Belford, G. C., Schwartz, P. M: and Sluizer, S. The
Effect of Back-up Strategy on Database Availability, CAC
Document No. 181, CCTCWAD Document No. 5515, Center for
Advanced Computation, University of Illinois at
Urbana-Champaign, February 1976.

[BCG]
Bernstein, P.A., M.A. Casanova, and N. Goodman,
"Comments on Process Synchronization in Database
Systems", ACM Trans. on Database Sys., Vol. 4, No. 4,
Dec. 1979.

(BRGPI
Bernstein, P.A.r Rothnie, J.B., Goodman, N. and
Papadimitriou, C.H. "The Concurrency Control Mechanism
of SDD-l: A System for Distributed Databases (The Fully
Redundant Case)", IEEE Trans. on Software Engineerinq,
Vol. SE-4, No. 3 (May-PTl7.

[BSJ]
Bernstein, P.A. and Shipman D.W. "A Formal Model of
Concurrency Control Mechanisms for Database Systems,"
Proc. 1978 Berkeley Workshop on Distributed Databases
and Computer Networks.

[BS 21
Bernstein P. and Shipman D. "The Correctness of
Concurrency Mechanisms in a System for Distributed
Databases (SDD-1)" ACM Trans. on Database Systems, Vol.
5, No. 1, March 1980.

[BSR)
Bernstein P., Shipman D., and Rothnie J. "Concurrency
Control in a System for Distributed Databases (SDD-l)"
ACM Trans. on Database Systems, Vol. 5, No. 1, March

l§..

!Page -244- Distributed Database Concurrency Control
Other Concurrency Control Methods Appendix A

[BSWJ
Bernstein, P. A., Shipman D. W. and Wong, W. S. "Formal
Aspects of Serializability in Database Concurrency
Control", IEEE Trans. on Software Enqineering, Vol.
SE-5, No. 3, May 1979.

[BK]
Breitwieser, H. and Kersten, U. Tech. Hoch. Karlsruhe,
W. Germany "Transaction and Catalog Management of the
Distributed File Management System DISCO," Proc. VLDB
79, Rio de Janeiro

[Casanova]
Casavona, M.A., "The Concurrency Control Problem for
Database Systems", Ph.D. Thesis,' Harvard University,
Technical Report TR-17-79, Center for Reserch in
Computing Technology, 1979.

[CBT]
Chamberlin, D. D., Boyce, R. F. and Traiger, I. L. "A
Deadlock-Free Scheme for Resource Allocation in a
Database Environment," Info. Proc. 74, North-Holland,
Amsterdam, 1974.

[CY]
Cohen, D. and Yemini, Y. USC-ISI, Marina del Rey,
California "Protocols for Dating Coordination," !Proc.
4th Berkeley Conference on Distributed Data Manaaement &
Computer Networks, August 7

(Date]
Date, C.J. "An Introduction to Database Systems."
Addison-Wesley Publishing Co. (1977).

[DPI

Deppe, M. E. and Fry, J. P. "Distributed Databases: A
Summary of Research," Computer Networks, Vol. 1, No. 2,
North-,Holland, Amsterdam, Sept. 1976.

[Ellis]
Ellis, C.A. "A Robust Algorithm for Updating Duplicate
Databases," Proc. 2nd Berkeley- Workshop on Distributed
Databases andComputer Networks, May 1977.

(ESW]
Epstein, R., M. Stonebraker, and E. Wong, "Distributed
Query Processing is a Relational Database System" Proc.
1978 ACM-SIGMOD Conference, ACM, N.Y., May 1978.

Distributed Database Concurrency Control Page -245-
Other Concurrency Control Methods Appendix A

[EGLT]
Eswaran, K.P., Gray, J.N., Lorie, R.A. and Traiger, I.L.
"The Notions of Consistency and Predicate Locks in a
Database System", Communications of the ACM, Vol. 19,
No. 11, November 1976.

[Everest]
Everest, G. C. "Concurrent Update Control and Database
Integrity," in Database Management, Klimbie, J. W. and
Koffeman, K. L. (eds.), North-Holland, Amsterdam, 1974.

[G-M 11
Garcia-Molina, H. "Performance Comparisons of Two Update
Algorithms for Distributed Databases," !Proc. 3rd
BerkeleXWorkshop on Distributed Databases and Computen
Networks, August 1978.

[G-M 2]
Garcia-Molina, H. "Performance of Update Algorithms for
Replicated Data in a Distributed Database", !Ph.D.
Dissertation, Computer Science Department, Stanford
University, June 1979.

fG-M 3]
Garcia-Molina, H. Stanford University, Stanford,
California "A Concurrency Control Mechanism for
Distributed Data Bases Which Uses Centralized Locking
Controllers," !Proc. 4th Berkeley Conference on
D ist r ibu ted Data----------------- t~e

9Mana.ement & ComuterNetworks, August

[G-M 4]
Garcia-Molina, H., "Centralized Control Update
Algorithms for Fully Redundant Distributed Databases",
Proc. First International Conf. on Distributed Computing
Sysems, IEEE N.Y., Oct. 1-7 , pp. U37

[GL)
Gardarin, G. and Lebaux, P. "Scheduling Algorithms for
Avoiding Inconsistency in Large Databases." Proc. 1977
Int. Conf. on Ver Large Data Bases,IEEE, N.Y., 501=3l 6

[GS]
Gelembe, E. and Sevcik, K. "Analysis of Update
Synchronization for Multiple Copy Databases," Proc. 3rd
Berkeley on Distributed Databases and Computer
Networks, August 17 .

[GBWRR]

.2.-&

Page -246- Distributed Database Concurrency Control
Other Concurrency Control Methods Appendix A

Goodman, N., P.A. Bernstein, E. Wong, C.L. Reeve, and
J.B. Rothnie, "Query Processing in SDD-l: A system for
Distributed Databases", Technical Report CCA-79-06,
Computer Corporation of America, Cambridge, MA, Oct.
1979 (submitted for publication).

[GBW]
Gouda, M., Boyd, D. and Wood, W. Honeywell,
Bloomington, Minnesota "Global and Local Models for he
Specification and Verification of Distributed Systems,"
Proc. 4th -Berkeley Conference on Distributed Data
Management & ComTputer Networks, August 1979.

(Gouda]
Gouda, M.G. "A Hierarchical Controller for Concurrent
Accessing of Distributed Databases", Proc. 4th Workshop
on Computer Architecture for _ro ein ,

August 1978.

(GLPT]
Gray, J. N., Lorie, R. A., Putzulo G. R. and Traiger, I.
L. "Granularity of Locks and Degrees of Consistency in
a Shared Database," IBM Research Report RJ1654,
September 1975.

[Gray]
Gray, J. N. Notes on Database Operating Systems,
unpublished lecture notes. IBM San Jose Research
Laboratory, San Jose, Calif., 1977.

[Hewitt]
Hewitt, C.E., "Protection and Synchronization in Actor
Systems", Working Paper 83, MIT Artificial Intelligence
Lab, Nov. 1974.

[Hoare]
Hoare, C.A.R., "Monitors: An Operating System Structure
Concept", CAMC 17, 10 (Oct 1974), 549-557.

[,HS 11
Hammer, M. M. and Shipman, D. W. "An Overview of
Reliability Mechanisms for a Distributed Data Base
System," !Proc. 1977 COMPCON, IEEE, N.Y.

[HS 21
Hammer, M.M., and Shipman, D.W., "Reliability Mechanisms
for SDD-l:
A System for Distributed Datases", Technical Report

CCA-79-05, Computer Corporation of America, Cambridge,
MA, 1979 (submitted for publication).

4- -- - - - - - - - _ _ _ • " , - --. -

Distributed Database Concurrency Control Page -247-
Other Concurrency Control Methods Appendix A

[HSW]
Helb, G., M. Stonebraker, E. Wong, "INGRES-A Relational
Database System", Proc. 1975 National Computer Conf.,
AFIPS Press, Montrale, N.J.

[,SY]
Henver, A.R., and S.B. Yao, "Query Processing in
Distributed Databases", IEEE Trans. on Soft. En., Vol
SE-5, No. 3, May 1979.

[HVJ
Herman, D. and J.P. Verjus, "An Algorithm for
Maintaining the Consistencyof Multiple Copies-, Proc.
First International Conf. on Distributed CompiRh ns
Systems, IEEE, N.Y., pp. 625-631.

[JT]
Johnson, P.R. and Thomas, R.H. The Maintenance of
Duplicate Databases", Network Working Group RFC #677 NIC
#31507, January 27, 1975.

[KNTH]
Kaneko, A., Y.Nishihara, K. Tsuruoka, and M. Hattori,
"Logical Clock Synchronization Method for Duplicated
Database Control", Proc. First International Conf. on
Distributed Compgting. Systems, IEEE, N.Y., Oct. 1979,
pp. 601-611.

[KMIT]
Kawazu, S., Minami, S., Itoh, K. and Teranaka, K.
"Two-Phase Deadlock Detection Algorithm in Distributed
Databases," :Proc. 1979 International Conference on Very
Lar9e Data Bases, IEEE, N.Y.

[KC]
King, P. F., and Collmeyer, A. J. "Database Sharing--An
Efficient Mechanism for Supporting Concurrent
Processes," !Proc. 1974 NCC, AFIPS Press, Montvale, New
Jersey, 1974.

[KPJ
Kung, H.T. and Papadimitriou, C.H. "An Optimality Theory
of Concurrency Control for Databases." Proc. 179
ACM-SIGMOD Int. Conf. on Management of Data (June 1979).

[KR]
Kung, H.T. and Robinson, J.T. "on Optimistic Methods for
Concurrency Control." iProc. 1979 Int. Conf. on Very
Large Data Bases (Oct. 1979).

Page -248- Distributed Database Concurrency Control
Other Concurrency Control Methods Appendix A

[.Lamzport 1]
Lamport, L. Time, Clocks, and the Ordering of Events in
a Distributed System, Massachusetts Computer Associates,
CA-7603-2911, Wakefield, Mass., March 1976.

[Lamport 21
Lamport, L. Towards a Theory of Correctness of
Multi-User Database Systems, Massachusetts Computer
Associates, CA-7610-0712, October 1976.

[,LS]
Lampson, B. and Sturgis, H. Crash Recovery in a
Distributed Data Storage System, Tech. Report, Computer
Science Laboratory, Xerox Palo Alto Research Center,
Palo Alto, Calif. 1976.

(Lelann]
LeLann, G. "Algorithms for Distributed Data-Sharing
Systems Which Use Tickets," ,Proc. 3rd Berkeley Workshop
on Distributed Databases and ComputerNetworks, August
1978.

[Lin]
Lin, W. K. Sperry Research Center, Sudbury,
Massachusetts "Concurrency Control in a Multiple Copy
Distributed Data Base System," Proc. 4th Berkeley
Conference on Distributed Data Management & Computer

Networ ks, August 1979.

(MM]
Menasce, D.A. and Muntz, R.R. "Locking and Deadlock
Detection in Distributed Databases," IEEE Transactions
on Software Ensineerins, Vol SE-5, No. 3, May 1979, pp.
195-202.

[MPM]
Menasce, D.A., G.J. Popek and R.R. Muntz "A Locking
Protocol for Resource Coordination in Distributed
Databases", Proc. 1978 ACM-SIGMOD Conf. on Management of
Data, ACM, N.Y.

[Milankovic]
Milankovic, M. "Update Synchronization in Multiple
Database Systems," Ph.D. dissertation, Dept. of EE&CS,
University of Massachusetts, Amherst, May 79.

[Minoura 1]
Minoura, T. Stanford University, Stanford, California
"A New Concurrency Control Algorithm for Distributed
Data Base Systems," Proc.__4thBerkeleY Conference on

Distributed Database Concurrency Control Page -249-Other Concurrency Control Methods Appendix A

Distributed Data Management & Computer Networks August1979.

[Minoura 2]
Minoura, T. "Maximally Concurrent Transaction
Processing," Proc. 3rd Berkeley Workshop on DistributedDatabases and ComputerNetworks, August 1978.

(Montgomery]
,Montgomery, W.A. "Robust Concurrency Control for a
Distributed Information System", Ph.D. dissertation,
Laboratory for Computer Science, MIT, Dec. 1978.

[PBR]
Papadimitriou, C. H., Bernstein,'P. A. and Rothnie, J.
B., Jr. "Some Computational Problems Related to
Database Concurrency Control," Proc. Conf. on
Theoretical Computer Science, Waterloo, Ontario, August

[Papadimitrioul
Papadimitriou, C. H. Serializability of Concurrent
Updates, Journal of the ACM, Vol. 26, No. 4, Oct. 1979,
pp. 631-653.

[PKWI
Peacock, J. K., Manning, E. and Wong, J. W.
"Synchronization of Distributed Simulation Using
Broadcast Algorithms," !Proc. 4th Berkeley Conference on
Distributed Data Management & Compute Networks, August

[RFI
Rahimi, S.K. and W.R. Frants, "A Posted Update Approach
to Concurrency Control in Distributed Database Systems",
Proc. First International Conf. on Distributed
CornmutiiSystems, IEEE, NY ~ I 7 ~ :I

(RS]
Ramirez, R. J. and Santoro, N. "Distributed Control of
Updates in Multiple-copy Data Bases: A Time Optimal
Algorithm," Proc. 4th Berkeley Conference on Distributed
Data Manag2ement & Computer Networks, August 1979.

[Reed]
Reed, D.P. Namin.2 nd Synchronization a
Decentralized Computer System, P.D.esls, M.I.T.
Department of Electrilcal Englneering, Sept. 1978.

Page -250- Distributed Database Concurrency Control
Other Concurrency Control Methods Appendix A

[Ries 1]
Ries, D. "The Effect of Concurrency Control on Database
Management System Performance", Ph.D. Dissertation,
Computer Science Department, University of California,
Berkeley, April 1979.

[Ries 2]
Ries, D. Lawrence Livermore Laboratory, Livermore,
California "The Effects of Concurrency Control on the
Performance of a Distributed Data Management System,"
Proc. 4th Berkeley Conference on Distributed Data
Management & Comp]ter Networks, August 1979.

[Rosen]
Rosen, E. C. "The Updating Protocol of the ARPANET's
New Routing Algorithm: A Case Study in Maintaining
Identical Copies of a Changing Distributed Data Base,"
:Proc. 4th Berkele_ Conference on Distributed Data
Management & Computer Networks, August 1979.

[RSLI
Rosenkrantz, D.J., Stearns, R.E. and Lewis, P.M.
"System Level Concurrency Control for Distributed
Database Systems", ACM Trans. on Database Sy.stems, Vol.
3, No. 2 (June 1978), pp. 178-198.

[RBFG]
Rothnie, J.B., Bernstein, P.A., Fox, S.A., Goodman, N.,
Hammer, M.M., Landers, T.A., Reeve, C.L., Shipman, D.W.,
and Wong, E. "Introduction to a System for Distributed
Databases", ACM Trans. on Database System, Vol. 5, No.
1, March 1980.

[RG 1]
Rothnie, J.B. and Goodman, N. "An Overview of the
Preliminary Design of SDD-l: A System for Distributed
Databases", Proc. 1977 Berkeley Workshop on Distributed
Data Manaqement and Computer Networks, May 1977, pp.!i 39-57.

[RG 2]
Rothnie, J. B., Jr., and Goodman, N. "A Survey of
Research and Development in Distributed Database
Management," Proc. Third Int. Conf. onVery Larqe
Databases, IEEE, 1977.

[RGM]
Rothnie, J. B., Jr., Goodman, N., and Marill, T.
"Database Management in Distributed Networks" in F. F.
Kuo (ed.), Protocols and Techniques or Data

Distributed Database Concurrency Control Page -251-
Other Concurrency Control Methods Appendix A

Communication Networks, Prentice-Hall, Englewood Cliffs,
N.J., 1978.

[Schlageter]

Schlageter, G. "Process Synchronization in Database
Systems". TODS 3, 3 (Sept. 1978), 248-271.

[ssw]
Sequin, J., G. Sargeant, and P. Wilnes, "A Majority
Consensus Algorithm for the Consistency of Duplicated
and Distributed Information", Proc. First International
Conf. on Distributed Computin_Systems, IEEE, N.Y., Oct.
1979, pp.617-624.

(Selinger]
Selinger, P.G., Private Communications, Nov. '"'.

(SM 1]
Shapiro, R.M. and Millstein, R.E. "Reliability and
Fault Recovery in Distributed Processing", Oceans '77
Conference Record, Vol. II, Los Angeles, 1977.

ISM 2]
Shapiro, R.M. and Millstein, R.E. NSW Reliability Plan,
Massachusetts Computer Associates, Inc., CA-7701-1411,
June 10, 1977.

[SKI
Silberschatz, A. and Z. Kedem", Consistency in
Hierarchical Database Systems", Journal of the ACM, Vol.
27, No. 1, Jan. 1980, pp. 72-80.

[SLR]
Stearns, R.E., Lewis, P.M. II and Rosenkrantz, D.J.
"Concurrency Controls for Database Systems";
Proceedings of the 17th Annual Symposium on Foundations
of Computer clence,-EEE 1976,-pp19-3T2.

[Stonebraker]
Stonebraker, M. "Concurrency Control and Consistency of
Multiple Copies of Data in Distributed INGRES, IEEE
Transactions on Software Eninee ring, Vol. SE-5, No. 3,
May 1979, pp.188-194.

[SN]
Stonebraker, M. and Neuhold, E. "A Distributed Database
Version of INGRES", Proc. 2nd Berkeley Workshop on
Distributed Data Management and Computer Networks, May,

Page -252- Distributed Database Concurrency Control
Other Concurrency Control Methods Appendix A

[SRT]
Stucki, M.J., Cox, J.R., Roman, G.C. and Turen, P.N.
"Coordinating Concurrent Access in a Distributed
Database Architecture," Proc. 4th Workshop on Computer
Architecture for Non-Numeric Process - ut -

(Takagi]
Takagi, A. "Concurrent and Reliable Updates of
Distributed Databases", M.I.T. Lab. for Computer
Science, Request for Comments No. 167, Nov. 1978.

[Thomas 11
Thomas, R.H. "A Majority Consensus Approach to
Concurrency Control for Multiple Copy Databases", ACM
Trans. on Database Systems, Vol. 4, No. 2, June 1979,
pp. 180-209.

(Thomas 21
Thomas, R.H. "A Solution to the Concurrency Control
:Problem for Multiple Copy Databases", Proc. 1978 COMPCON
Conference., IEEE, N.Y.

[Willcox]
Willcox, D.A., "Optimization of a Relational Algebra
Query to a Distributed Database Using Statistical
Sampling Methods", Doc #234, Center for Advanced
Computation, Univ. of Ill., August, 1977.

[Wong]
Wong, E., "Retrieving Dispersed Data in SDD-I: A System
for Distributed Databases", Proc. 1977 Berkeley Worksho
on Dist. Data Man. and Comp. Netw. May 1977

Distributed Database Concurrency Control Page -253-
Other Concurrency Control Methods Appendix A

A Partial Index of References

1. Certifiers: Badal 2, Casanova, KR, Papadimitriou

2. Concurrency Control Theory: BCG, BS 1, BS 2, BSW,

Casanova, EGLT, KP, Lamport 2, Minoura 2, PBR,

Papadimitriou, Schlageter, SK, SLR

3. Performance: G-M 1, G-M 2, GS, Ries 1, Reis 2

4. Reliability:

General: ABDG, AD, BSS, HS 1, HS 2, LS

Two-Phase Commit: HS 1, HS 2, LS

5. Timestamp-Ordered Scheduling (T/0)

General: BGRP, BP, BS 2, BSR, HV, KNTH, Lelann, Lin,

SM 1, SM 2, Thomas 1, Thomas 2

Thomas' Write Rule: JT, Thomas 1, Thomas 2

Multi-Version Timestamp-Ordering: Montgomery, Reed

Timestamp and Clock Management: Lamport 1, Thomas 1

Page -254- Distributed Database Concurrency Control
Other Concurrency Control Methods Appendix A

6. Two-Phase Locking (2PL)

General: BSW, EGLT, GLPT, Gray, Papadimitriou,I
Schlageter, SK

Distributed PL: MPMD RSL, Stonebraker, tMinoura I

Primary Copy 2PL: Stonebraker, SN

Centralized 2PL: ABDG, AD, G-M 3, G-M 4

Deadlock Detection/Prevention: Gray, KCC, KMIT, RSL,

Stonebraker

MISSION
* Of

Rome Air Development Center
RAI)C ptana and executeA Ae~eoAch, devetopment, tt and
Aetected acquPition ptrogtamn in 6uppo4.t o6 Command, ContAot

* Communcatom~n and intettgence (C31 I ac.tivitieA. Technca
and engineeLing 6uiPP04t withiZn LV~ea.6 06 technical competence
Z6 p.'Lovided to ESV P'togkarn O66ceA (P0.6) and otiieA ESO
etement6. The pitincipat technicat miZ6,6on a~eOA aAe
C2M.OnuCati0n6, etesztAoinagnetc guidancze and cont'wt, &wu,-
veiZtance o6 gtound and aeLo6pace object6, inteUtgence data
cottection and handting, indo'witon 6y,6tem technotogy,
iono,6phe~ic p.&opogation, aotid, &tate- &c-LenceA&, micAo&we.
ph*6ics and etectonic, xzeabitity, maintainabitity and
coinpatibiZty.

I

